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We study the band topology and the associated linking structure of topological semimetals with nodal lines
carrying Z2 monopole charges, which can be realized in three-dimensional systems invariant under the
combination of inversionP and time reversal T when spin-orbit coupling is negligible. In contrast to thewell-
known PT-symmetric nodal lines protected only by the π Berry phase, in which a single nodal line can exist,
the nodal lines with Z2 monopole charges should always exist in pairs.We show that a pair of nodal lines with
Z2 monopole charges is created by a double band inversion process and that the resulting nodal lines are
always linked by another nodal line formed between the two topmost occupied bands. It is shown that both the
linking structure and the Z2 monopole charge are the manifestation of the nontrivial band topology
characterized by the second Stiefel-Whitney class, which can be read off from theWilson loop spectrum.We
show that the second Stiefel-Whitney class can serve as a well-defined topological invariant of aPT-invariant
two-dimensional insulator in the absence of Berry phase. Based on this, we propose that pair creation and
annihilation of nodal lines with Z2 monopole charges can mediate a topological phase transition between a
normal insulator and a three-dimensional weak Stiefel-Whitney insulator. Moreover, using first-principles
calculations, we predict ABC-stacked graphdiyne as a nodal line semimetal (NLSM) with Z2 monopole
charges having the linking structure. Finally, we develop a formula for computing the second Stiefel-Whitney
class based on parity eigenvalues at inversion-invariant momenta, which is used to prove the quantized bulk
magnetoelectric response of NLSMs with Z2 monopole charges under a T-breaking perturbation.
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Introduction.—Topological semimetals [1–38] are novel
states of matter whose band structure features gap-closing
points or lines. Such gapless nodal points or lines are
protected by either crystalline symmetry [4–17] or topo-
logical invariants [18–38]. The nodal point (Weyl point) in
a Weyl semimetal [31–38] is a representative example of
the latter case. Because of the quantized monopole charge,
Weyl points always exist in pairs [31–34]. Moreover, pair
creation and annihilation of Weyl points can mediate
topological phase transitions between a normal insulator
(NI) and a topological insulator in three dimensions
[31–33,37–40]. Since the origin of the monopole charge
is the Berry curvature of complex electronic states, break-
ing either time reversal T [31–33] or inversion P [35–38] is
a precondition to host a Weyl point [34].
However, recent theoretical studies have found that, in the

presence of P and T symmetries, a nontrivial monopole
charge can exist, carried by a nodal line (NL), when spin-
orbit coupling is negligibly weak [18–23]. Here the monop-
ole charge is a Z2 number originating from the topology of
real electronic states [18–20,23], which is clearly distinct
from the integer monopole charge ofWeyl points originating
from complex electronic states. In fact, recently, spinless

fermions in PT-symmetric systems have received great
attention due to the discovery of semimetals with NLs
protected by the π Berry phase [23–26], appearing in various
forms, including rings [41–49], crossings [50–53], chains
[54–56], links [57–64], knots [63–65], nexus [66–68], and
nets [69–71]. However, all the NLs belonging to this class do
not carry a Z2 monopole charge. Because of this, such a NL
can exist alone in the Brillouin zone (BZ), which can
disappear after shrinking to a point [23]. No candidate
material has been predicted to host Z2-nontrivial NLs
(Z2NLs) yet.Although there are preceding theoretical studies
onZ2NLs [21–23], the generic feature of the associated band
structure topology, which is useful to facilitate material
discovery, has not been thoroughly studied.
In this Letter, we study topological characteristics unique

to a nodal line semimetal (NLSM)withZ2monopole charges
and propose the first candidate material, ABC-stacked
graphdiyne. In particular, we describe the mechanism for
creating Z2NLs and the linking structure between them,
which originates from the underlying global topological
characteristics of real electronic states represented by the
second Stiefel-Whitney (SW) class. The linking structure
exists between aZ2NLnear the Fermi energyEF and another
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NL below EF, similar to the linking structure predicted in a
5DWeyl semimetal recently [72]. This demonstrates that, in
contrast to the common belief, the topological property of a
NLSMis determinednot only by the local band structure near
crossing points at EF but also by the global topological
structure of all occupied bands below EF.
Band crossing in PT-invariant spinless fermion

systems.—Z2-trivial NLs can be described as follows
[23,26]. Since ðPTÞ2 ¼ þ1 in the absence of spin-orbit
coupling, the PT operator can be represented by PT ¼ K,
where K denotes the complex conjugation. In this basis, the
PT invariance of the Hamiltonian, PTHðkÞðPTÞ−1 ¼
HðkÞ, requiresHðkÞ to be real. Then the effective two-band
Hamiltonian near a band crossing point can be written as
HðkÞ ¼ f0ðkÞ þ f1ðkÞσx þ f3ðkÞσz, where σx;y;z are the
Pauli matrices for the two crossing bands and f0;1;3ðkÞ
are real functions of momentum k ¼ ðkx; ky; kzÞ. Because
closing thebandgap requires only two conditionsf1;3ðkÞ¼0

to be satisfied, whereas there are three independent vari-
ables kx;y;z, the generic shape of band crossing points is
a line.
On the other hand, to describe Z2NLs, one needs to

consider a four-band Hamiltonian as first proposed in [23].
When the reality condition is imposed, HðkÞ can include
three 4 × 4 anticommuting matrices, which indicates that a
3D massless Dirac fermion can exist. The Dirac point is
stable against the gap opening because the mass terms,
which are imaginary, are forbidden. However, there are
other allowed real matrix terms that can deform the Dirac
point into a NL. For instance, let us consider the following
Hamiltonian introduced in [23],

HðkÞ ¼ kxσx þ kyτyσy þ kzσz þmτzσz; ð1Þ

where τx;y;z and σx;y;z are Pauli matrices. The energy

eigenvalues are E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ ðρ� jmjÞ2

p
, where ρ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2y þ k2z
q

. One can see that the conduction and valence

bands touch along the closed loop (aZ2NL) satisfyingkx ¼ 0
and ρ ¼ jmj. Moreover, two occupied bands cross along
another line along ρ ¼ 0 (NL�), which is linked with the
Z2NL.Becauseof this linking, theZ2NL is stable and distinct
from trivial NLs. As m → 0, the linking requires that the
Z2NL shrinks to aDirac point. Asm becomes finite after sign
reversal, the size of the Z2NL increases again. It can never
disappear by itself. Because a single Z2NL is stable, only a
pair of Z2NLs can be created by band inversions.
Z2NLs in ABC-stacked graphdiyne.—Our first-princi-

ples calculations predict that ABC-stacked graphdiyne
realizes Z2NLs with the linking structure. ABC-stacked
graphdiyne is an ABC stack of 2D graphdiyne layers
composed of a sp2-sp carbon network of benzene rings
connected by ethynyl chains. [See Fig. 1(c).] Recently,
Nomura et al. [73] theoretically proposed ABC-stacked
graphdiyne as a NLSM. Here we show that the NLs in this

material are Z2NLs. Consistent with [73], we find NLs
occurring off the high-symmetry Z point of the BZ. While
the electronic band structure displays the band gap along
the high-symmetry lines as shown in Fig. 1(d), the valence
and conduction bands cross off the high-symmetry k points
along a pair of closed NLs colored in red in Fig. 1(e).
Additionally, we find that two topmost occupied bands
form another NL [the orange line in Fig. 1(e)], which
pierces the red NLs, manifesting the proposed linking
structure. Interestingly, the effective four-band Hamiltonian
describing ABC-stacked graphdiyne near EF is identical to
Eq. (1) [73], indicating the generality of our theory.
Double band inversion.—Let us illustrate a generic

mechanism for a pair creation of Z2NLs in inversion
symmetric systems, which is composed of consecutive
band inversions, dubbed a double band inversion (DBI).
For concreteness, we describe a DBI by using the
Hamiltonian in Eq. (1) after the replacement kz →
jkj2 −M. The evolution of the band structure during the
DBI is illustrated in Fig. 2(a) as a function of the parameter
M. As we increase M from M < −jmj, the first band
inversion occurs atM ¼ −jmj between the top valence and
bottom conduction bands, creating a trivial NL. Then, the
inversion at M ¼ 0 between two occupied (unoccupied)
bands generates another NL below (above) EF, which we
call NL�. The last band inversion at M ¼ jmj between two
inverted bands near EF splits the trivial NL into two Z2NLs
linked by the NL� below EF [Fig. 2(a)]. During the DBI,
each occupied (unoccupied) band crosses both of two
unoccupied (occupied) bands, which explains why the
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FIG. 1. (a) Band structure near a NL with zero Z2 monopole
charge. (b) Band structure near a NL carrying a unit Z2 monopole
charge (Z2NL) linked with another nodal line (NL�) below the
Fermi level (EF). (c) Atomic structure of ABC-stacked graph-
diyne. (d) Band structure of ABC-stacked graphdiyne where thick
orange lines indicate degenerate NLs above and below EF.
(e) The shape of two Z2NLs (red loops) at EF (E ¼ 0) linked
with a NL� below EF (yellow line) in ABC-stacked graphdiyne.
Here, for clarity, only the NL� linked with Z2NLs is shown
whereas other unlinked NL�s are not plotted.
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minimal number of bands required to create a Z2NL is four.
In ABC-stacked graphdiyne, both valence and conduction
bands are doubly degenerate along the high-symmetry kz
axis due to threefold rotation symmetry; thus, NL� exists
from the beginning. In such a system, a single band
crossing immediately inverts two occupied and two unoc-
cupied bands having opposite parities, generating a Z2NL
pair as shown in Fig. 2(b). In noncentrosymmetric systems,
Z2NL pair creation occurs in a similar manner, that is,
by splitting a trivial NL into a Z2NL pair, which are
linked with another NL below EF as described in the
Supplemental Material [74].
Z2 monopole charge, linking number, and the second

Stiefel-Whitney class.—Here we give a formal proof for the
equivalence between the Z2 monopole charge and the
linking number, based on the correspondence between
the Z2 monopole charge and the second SW class implied
by K theory [95].
The Z2 invariant was originally defined in [23] as

follows. First, we take real occupied states by imposing
PTjunki ¼ junki. Then we consider a sphere surrounding a
NL, which is divided into two patches (the northern and
southern hemispheres) overlapping along the equator as
shown in Fig. 3(a). One can find smooth real states juNnki
(juSnki) on the northern (southern) hemisphere. On the
overlapping circle, juN;S

nk i are connected by a smooth
transition function tNSðkÞ ∈ SOðNoccÞ in a way that
juSnki ¼ tNS

mnðkÞjuSmki, where Nocc denotes the number of
occupied bands. Let us note that, since the real occupied
states are orientable on a sphere, transition functions can be
restricted to SOðNoccÞ [74]. The homotopy group
π1½SOðNocc > 2Þ� ¼ Z2 indicates that there is a Z2-type

obstruction for defining a real smooth state on the sphere,
which is nothing but the Z2 monopole charge of NLs.
Because π1½SOð2Þ� ¼ Z, the winding number of tNSðkÞ is
an integer invariant when Nocc ¼ 2. In this case, the Z2

monopole charge is defined by the parity of the winding
number.
Now we make a connection between the Z2 monopole

charge and the second SW class w2. w2 characterizes the
obstruction to lifting transition functions of real occupied
states to their double covering group [96–98]. When
w2 ¼ 0 (w2 ¼ 1), the lifting is allowed (forbidden). For
simplicity, let us first consider the case with Nocc ¼ 2 so
that the transition function tNSðkÞ ¼ exp½iθðkÞσy�, where
σx;y;z are the Pauli matrices for two occupied bands. When
the Z2 monopole charge on the sphere is 0 (1), the angle
θðkÞ evolves from 0 to 4nπ [ð4nþ 2Þπ] with an integer n,
because tNS is periodic along the equator and has an
even (odd) winding number. Now let us ask whether it is
possible to take a lift tNS → t̃NS from SO(2) to its double
covering group U(1) while the periodicity of t̃NS is kept. To
answer this, one defines a two-to-one mapping π: Uð1Þ →
SOð2Þ by using t̃NSðθÞ¼exp½iðθ=2Þ� and tNSðθÞ¼expðiθσyÞ.
Let us note that, when tNSðθÞ has an even (odd) winding
number with θ ∈ ½0; 4nπ� (θ ∈ ½0; ð4nþ 2Þπ�), t̃NSðθÞ is
periodic (nonperiodic); thus the lifting from tNS to t̃NS is
well defined (ill defined). The same argument applies to the
case with Nocc > 2 [97]. The Z2 monopole charge is thus
identified with w2.
To derive the equivalence between w2 and the linking

number, let us continuously deform the sphere wrapping a
NL γ, by gluing the north and south poles at the center, into
a thin torus completely enclosing γ. As long as the band gap
remains finite during the deformation, w2 is invariant since
the gluing of the north and south poles does not create a
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FIG. 2. (a) Evolution of band structure during a double band
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crossing between the conduction and valence bands (two occu-
pied bands). � indicate the inversion eigenvalues at the Γ point.
(b) A variant of BDI process realized in graphdiyne. Because of
the threefold rotation symmetry, both the valence and conduction
bands are degenerate along the kz axis; thus NL� exists before
Z2NLs are created.
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patches. (c),(d) Wilson loop spectrum for ABC-stacked graph-
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respectively.
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monopole, which is further confirmed numerically as shown
in Figs. 3(c) and 3(d). We assume that the torus is thin
enough so that all occupied bands on it are nondegenerate.
In this limit, according to the Whitney sum formula
[99,100], w2 satisfies the following relations modulo
two [74]

w2 ¼
X

n<m

½w1;ϕðBnÞw1;θðBmÞ − w1;ϕðBmÞw1;θðBnÞ�; ð2Þ

where w1;ϕðBnÞ and w1;θðBnÞ are the first SW classes of the
nth occupied band Bn along the toroidal and poloidal cycle,
respectively, on the torus wrapping γ. As shown in the
Supplemental Material [74], the first SW classes w1;ϕðBnÞ
andw1;θðBnÞ correspond to the Berry phaseΦn;ϕ andΦn;θ of
the nth band alongϕ and θ cycles, respectively, calculated in
a smooth complex gauge, and it characterizes the orient-
ability of the occupied states. Through a direct calculation of
the Berry phase in a Coulomb gauge, we find that [74]

w2 ¼
X

γ̃j

Lkðγ; γ̃jÞ; ð3Þ

where Lkðγ; γ̃jÞ ¼ ð1=4πÞ Hγ dk ×
H
γ̃j
dp · ðk − pÞ=jk −

pj3 is the linking number [101] between γ and another
NL γ̃j formed by the occupied band degeneracy. Let us
notice that NLs formed between unoccupied bands do not
contribute to the linking number (Lk) because the monopole
charge is defined by occupied bands. For the model in
Eq. (1) with Nocc ¼ 2, Φ1;ϕ ¼ π, Φ1;θ ¼ π, Φ2;ϕ ¼ π, and
Φ2;θ ¼ 0, so Lk ¼ 1 as expected.
Wilson loop method for computing w2.—w2 can be com-

puted efficiently by using the Wilson loop technique
[22,23,102–104]. The relation between the Wilson loop
spectrum and the Z2 monopole charge can be proved by
using the definition of w2 [96,98] as explicitly shown in the
Supplemental Material [74]. In general, on a 2D closed
manifold with coordinates ðϕ; θÞ, the Wilson loop
operator along ϕ at a fixed θ is defined by [102–104]
Wðϕ0þ2π;θÞ←ðϕ0;θÞ ¼ limN→∞FN−1FN−2;…; F1F0, where Fj

is the overlap matrix at ϕj ¼ ϕ0 þ 2πj=N with matrix
elements ½Fj�mn¼humðϕjþ1;θÞjunðϕj;θÞi, and ϕN ¼ ϕ0.
On the wrapping sphere covered by three patches,
shown in Fig. 3(b), the Wilson loop operator W0ðθÞ≡
Wð2π;θÞ←ð0;θÞ becomes W0ðθÞ¼tABWð2π;θÞ←ðπ;θÞtBC×
Wðπ;θÞ←ðπ=2;θÞtCAWðπ=2;θÞ←ð0;θÞ, where tABmn¼huAmð0;θÞjuBn×
ð2π;θÞi, tBCmn ¼ huBmðπ; θÞjuCn ðπ; θÞi, and tCAmn ¼
huCmðπ=2; θÞjuAnðπ=2; θÞi. Let us take a parallel-
transport gauge defined by juαp;nðϕ; θÞi ¼
½Wα

ðϕ;θÞ←ðϕα
0
;θÞ�mnjuαmðϕ; θÞi, where ϕα

0 ¼ 0; π; π=2 for α ¼
A, B, C, respectively, andWα is defined with smooth states
within the patch α. Then the Wilson loop operator becomes

W0ðθÞ ¼ Wp;0ðθÞ ¼ tABp ðθÞtBCp ðθÞtCAp ðθÞ; ð4Þ

where Wp and tp are the Wilson loop operator and the
transition function in the parallel-transport gauge. Let us
note that, in this gauge, W0ðθÞ is simply given by the
product of transition functions along the ϕ cycle. Since
W0ð0; πÞ ¼ 1 due to the consistency condition at triple
overlaps [74], the image of the map W0ðθÞ for θ ∈ ½0; π�
forms a closed loop. Then w2 is given by the parity of the
winding number of W0ðθÞ [74], which can be obtained
gauge invariantly from its eigenvalue ΘðθÞ [22,102]. We
apply the Wilson loop technique to ABC-stacked graph-
diyne and find that the Z2NLs carry nontrivial monopole
charges. Figure 3(c) shows the first-principles calculations
of the Wilson loop spectrum computed on a sphere
wrapping a Z2NL. The single crossing on the Θ ¼ π line
indicates the odd winding number, leading to w2 ¼ 1.
Figure 3(d) shows that the Wilson loop spectrum computed
on a torus is also nontrivial. These first-principles results
confirm the NLSM phase that we proposed here hosted in
ABC-stacked graphdiyne.
2D SW insulator.—Using w2 computed on a 2D BZ

torus, we can define a new PT-invariant 2D topological
insulator characterized by w2 when w1 ¼ 0 (i.e.,
w1;ϕ ¼ w1;θ ¼ 0). To prove this, we consider a 2D BZ
torus with coordinates ðϕ; θÞ ¼ ðkx; kyÞ [Fig. 3(e)]. Then
w2 is again given by the spectral degeneracy of the Wilson
loop W0ðθÞ on the torus, as shown in the Supplemental
Material [74].
Let us first consider the Nocc ¼ 2 case. We calculate W0

along an orientable cycle, because otherwise the Wilson
loop spectrum has no stable crossing points, such that it
does not show the topological property. One can always
choose such an orientable cycle [74]. Then, there are four
Z2 homotopy classes of Wilson loop spectra shown in
Figs. 3(f)–3(i). They are classified by the parity of the
number of linear crossing points on Θ ¼ 0 and Θ ¼ π.
A spectrum corresponds to w2 ¼ 0 (w2 ¼ 1) when it has
even (odd) linear crossing points on Θ ¼ π. Figures 3(f)–
3(i) are distinguished by the total number of linear crossing
points, which is even (odd) since w1;θ ¼ 0 (w1;θ ¼ 1) [74].
Notice that the topology of the spectrum in Figs. 3(h) and

3(i) differs only by an overall shift of the eigenvalues by π,
whereas those in Figs. 3(f) and 3(g) are invariant under the
shift. This indicates that w2 is independent (dependent) of
the unit cell choice when w1;θ ¼ 0 ðw1;θ ¼ 1Þ, because the
Wilson loop eigenvalues correspond to the Wannier centers
for insulators [102]. Indeed, the same unit cell dependence
exists for any even Nocc, whereas w2 is independent of the
unit cell choice for any odd Nocc [74]. Therefore, w2 is a
well-defined topological invariant when w1 ¼ 0. We may
call the insulator characterized by w2 ¼ 1 as a 2D
SW insulator (SWI). This is a new kind of fragile
topological phase [105–107] since it can be trivialized
when bands with ðw1; w2Þ ¼ ð1; 0Þ are added.
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Topological phase transition.—As a sphere wrapping a
Z2NL can be continuously deformed to two parallel 2D
BZs, one with w2 ¼ 1 and the other with w2 ¼ 0, a Z2NL
can be considered as a critical state separating a 2D NI and
a 2D SWI. Accordingly, the pair creation and annihilation
of Z2NLs can mediate a topological phase transition
between a 3D NI and a 3D weak SWI, a vertical stacking
of 2D SWIs. The presence of two NL� s formed between
occupied bands clearly distinguishes a 3D weak SWI from
a NI. Interestingly, first-principles calculations show that
ABC-stacked graphdiyne turns into a 3D weak SWI after
pair annihilation of Z2NLs under about 3% of a uniaxial
tensile strain applied along the z direction (see the Supple-
mental Material [74]).
Discussion.—Let us discuss measurable properties of

NLSM with Z2NLs. Unfortunately, its surface states are
generally not robust due to P breaking on the surface [23].
Nevertheless, our study suggests that observing the linking
structure using angle-resolved photoemission spectroscopy
[108] can provide strong evidence for Z2NLs. Moreover,
the bulk magnetoelectric response under a magnetic field
can provide another evidence. When P and T are indi-
vidually symmetries of the system, the number of pairs of
Z2NLs (Nmp) can be determined from the inversion
eigenvalues of the occupied bands at inversion-invariant
momenta (IIM). Since a DBI changes two inversion
eigenvalues at an IIM, Nmp is given by the sum of the
number of negative eigenvalue pairs over all IIM [21,74].
Let us note that, in P-invariant insulators with broken T,
two times magnetoelectric polarizability 2P3 is determined
by inversion eigenvalues in the same way as Nmp is [85].
This implies that a NLSM with an odd number of Z2NL
pairs turns into an axion insulator, which can host chiral
hinge modes along the domain wall [109–111], when the
band gap is opened due to a T-breaking perturbation such
as magnetic field [74]. We believe that the theoretical
prediction given in the present Letter can be experimentally
tested in ABC-stacked graphdiyne in the near future.
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Note added.—Recently, fragile topology in Z2-nontrivial
NLSMs was also explored in [112]; the results of that work
are consistent with our conclusions.
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