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We introduce a new class of self-sustained states, which may exist as single solitons or form multisoliton
clusters, in driven passive cylindrical microresonators. Remarkably, such states are stabilized by the radiation
they emit, which strongly breaks spatial symmetry and leads to the appearance of long polychromatic conical
tails. The latter induce long-range soliton interactions that make possible the formation of clusters, which can
be stable if their spatial arrangement is noncollinear with the soliton rotation direction in the microcavity. The
clusters are intrinsically two dimensional and, also, spatially rich. Themechanism behind the formation of the
clusters is explained using soliton clustering theory. Our results bring fundamental understanding of a new
class ofmultidimensional cavity solitons andmay lead to the development ofmonolithicmultisoliton sources.
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Introduction.—The advent of suitable materials and
experimental techniques to create so-called frequency combs
in microring cavities [1,2] triggered an intense research
program addressed at exploring the existence of combs that
are stable and spectrally broadband. These two features are
found together in self-sustained microring cavity solitons
(CSs), even in the presence of higher-order linear and
nonlinear effects [3–5], affording a continuously renewed
source of fundamentally new physical phenomena. One of
themost striking discoveries in this contextwas the existence
of frequency lockedCSs containing resonant radiation due to
higher-order dispersion, first reported in Ref. [6] and further
analyzed in Refs. [7–12]. Remarkably, while radiative leaky
mechanisms may be detrimental for solitons in conservative
systems [13,14], they may play a strong stabilizing role in
microring settings [9,10,15,16]. Resonant radiation arises
due to thematching of the CS dispersion relation with that of
the linear waves on top of the steady state background
[9,16–18], and it manifests itself by the appearance of promi-
nent spectral peaks linked to the parent solitons [13,19].
In higher dimensions, CSs are known to exist in the

context of monochromatic light [20–23], but they were
found to be stable only in a small region of the parameter
space if no extra effects, such as stabilizing potentials [24],
are considered. By and large, in most of the parameter
space strong instabilities and chaos have been shown to
occur [25]. Therefore, a fascinating and so far unexplored
question arises about whether radiative leakage may
stabilize multidimensional micro CSs, taking into account
that these are pulses with quite broad spectrum instead of
single-color beams.
In this Letter, we show that bright two-dimensional CSs

are stabilized in a passive cylindrical microcavity by the

action of the third-order dispersion (TOD). Radiation tails
of these CSs are inherently polychromatic as they represent
spatiotemporal conical radiation [26]. Various types of
conical radiations emitted by nonlinear pulses are routinely
observed as transient phenomena in free-space filamenta-
tion optics [27–32]. Importantly, radiation bursts emitted
aperiodically [31,32] can help to arrest collapse [31]. Here
we show that conical emission can in fact lock into a
complex and strictly stationary CS. Stable two-dimensional
CSs with conical tails exist in the parameter domain where
CSs with no radiation are highly unstable. Conical radiation
sets an intricate landscape for CS interaction that enables
the formation of complex cavity soliton clusters (CSCs)
containing a finite number of CSs. CSCs are stable only
for particular spatial arrangements having no lower-
dimensional analogues. Remarkably, spatial structuring
as well as dynamical formation of CSCs can be rigorously
understood in terms of the presented clustering theory. In
addition, instabilities of CSs may be beneficial as they
trigger spontaneous formation of CSCs.
Model.—Two-dimensional CSs may exist in cylindrical

microcavities, sketched in Fig. 1(b), such as micropillars or
microtubes [33–35]. The pump is assumed to excite
primarily azimuthal modes with zero group velocity along
the vertical coordinate, and therefore, the corresponding
Lugiato-Lefever model [36,37] for the intracavity field
envelope ψ can be written in the form:

−i∂tψ ¼ 1

2
ðB2∂2

x−2iB3∂3
xþ∂2

yÞψþðiγ−δþjψ j2Þψþh;

ð1Þ

where t, x, and y are, respectively, the normalized time (in
round-trip units), the periodic azimuthal coordinate, and the
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translationally invariant vertical coordinate. B2 ≡ ωð2Þτ=
ð2πRÞ2, B3 ≡ ωð3Þτ=ð2πRÞ3=3! are the dispersion coeffi-
cients; B2 > 0 corresponds to anomalous group velocity
dispersion (GVD); ωðqÞ ≡ ∂q

βωðβÞjβ0 ; β is the propagation
constant; R is the cylinder radius; γ accounts for losses;
δ≡ ½ω0 − ωp�τ is the normalized cavity detuning; ωp is the
pump frequency; ω0 is the closest resonance to ωp; τ≡
2πRng=c is the round-trip time for the pump frequency; ng is
the group index at ωp;Q ¼ ωpτ=γ is the quality factor; ψ ¼
EðτnNLÞ1=2 and h ¼ ðτ3nNLÞ1=2ω2

pS=ω0, where E, nNL, S
are the physical field, nonlinear coefficient, and coupled
pump strength. Equation (1) is invariant under transforma-
tions fta; xa1=2; ya1=2;ψa−1=2; γa−1; δa−1; ha−3=2g. We set
a ¼ γ and rescale x → xB1=2

2 that recasts Eq. (1) with
B2 ¼ γ ¼ 1. The termþ∂2

yψ excites light with slow vertical
motion corresponding to high-order modes of the cylinder
cross section near the cutoff frequency where GVD is
typically anomalous (hence, the sign þ) [38–43]. The
physical width of the CSCs and that of the pump beam
are discussed in the Supplemental Material [44], and are of
the order of ∼1 mm.
Two-dimensional CSs.—Solitons with B3 ¼ 0 are well

known in the context of single-color beams and are stable
only in a narrow parameter region outside the bistability
range [21–23]. In cylindrical microcavities, such two-
dimensional solitons are found to be strongly stabilized
by the action of TOD, B3 ≠ 0 [Fig. 1(a)]. This finding
cannot be anticipated by analogy with the one-dimensional
case, as the strength and parameter coverage of the soliton

instability increase rapidly in the higher dimensions [45].
Therefore, our result constitutes an important step towards
the realization of frequency combs in multidimensional
geometries.
A salient feature of the two-dimensional CSs, crucial

for this work, comes from the combination of TOD
and transverse GVD. As a result, CSs acquire a conical
radiation tail, as shown in Figs. 1(c) and 1(d). Such tails fall
in the normal GVD regime and therefore resemble free-
space optical X waves [46], whose extended tails are
interpreted in terms of angular phase matching [26]. In
our case, the spectral content of the conical radiation is
obtained by requiring phase matching for linear waves
∼aeikxxþikyy propagating on top of the ψ0 background away
from the soliton core:

vxkx−B3k3x ¼�½ðδþk2y=2þB2k2x=2− jψ0j2Þ2− jψ0j4�1=2;
ð2Þ

where vx is the nonzero x component of CS velocity (that
we obtain together with soliton profile) induced by TOD.
Equation (2) perfectly describes the spectral structure of CS
tails, as shown in Fig. 1(d), and in Figs. 3(c) and 3(e) for
CSCs.
Theory of CS interaction and dynamical streams.—In

order to unveil what types of CSCs exist in cylindrical
microcavities, it is crucial to understand how individual
CSs form ensembles. To this end, we develop the cluster
formation theory, presented below for the case of two
interacting CSs (see further details in the Supplemental
Material [44]). A pair of CSs will bind together at locations
in the xy plane meeting equilibria against intersoliton
forces. A superposition of two CSs ψ1;2 in the reference
frame moving with velocity vx is accurately described by
the ansatz ψ ¼ ψ1½x1ðtÞ; y1ðtÞ� þ ψ2½x2ðtÞ; y2ðtÞ� þ χ,
where χ is a small correction arising due to interacting
CSs offset by a distance ½Δx2 þ Δy2�1=2 (Δx≡ x2 − x1,
Δy≡ y2 − y1). _x1;2 ≡ ∂tx1;2 is the soliton velocity mea-
sured relative to vx and _y1;2 is the transverse velocity
component acquired due to CS interaction. When ψ1;2 are
far from instability thresholds, χ is most naturally regarded
as the superposition of two neutral modes excited due to
intersoliton forces [47,48]. Substituting the above ansatz in
Eq. (1) one obtains linearized equation for χðx; yÞ:

X2

q¼1

½_xq∂xq þ _yq∂yq �S⃗q ¼ L̂ χ⃗þK⃗; ð3Þ

where χ⃗ ≡ ½χ�; χ�†, S⃗q ≡ ½ψ�
q − ψ�

0;ψq − ψ0�†, and K⃗ con-
tains the terms resulting from the soliton-soliton inter-
actions. Projecting the above equation onto the neutral

modes of the operator L̂†ðS⃗pÞ, ηð1Þp and ηð2Þp (p ¼ 1, 2),
leads to the algebraic system of four equations for the
soliton velocities Â½_x1; _x2; _y1; _y2�T ¼ b. The elements of

FIG. 1. (a) CS amplitudes versus δ and B3 (labels at each
branch) around the cavity resonance (black) for h ¼ 2. Unstable
middle branches merging with background are shown only for
B3 ¼ 0 and B3 ¼ 0.7. Thick (thin) lines denote stable (unstable)
states. (b) Sketch of the driven microcavity. An example of stable
soliton is shown in spatial (c) and frequency (d) domains for
B3 ¼ 0.2, δ ¼ 3.3. In (d), the vertical line marks the zero GVD
and solid curves mark the conical radiation wave numbers
calculated from Eq. (2). Pump is at kx ¼ ky ¼ 0. Axes of panels
(c) and (d) are x ∈ ½−10; 10�, y ∈ ½−5; 5�, kx ∈ ½−10; 10�,
ky ∈ ½−15; 15�.
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the 4 × 4 matrix Â and vector b are, respectively, the

projections of ηð1;2Þp on the neutral modes of L̂ðS⃗qÞ and on

the vector K⃗. Two-soliton clusters exist for displacements
fΔx;Δyg for which Δvx ≡ _x1 − _x2 ¼ 0 and Δvy ≡
_y1 − _y2 ¼ 0. In addition, such clusters are stable against
intersoliton forces only if all velocity vectors exΔvxþ
eyΔvy, where ex, ey are basis vectors, point towards
fΔx;Δyg in close proximity of this point.
Figure 2(a) shows predictions of the above theory for

two interacting identical single-peak CSs with B3 ¼ 0.7
and δ ¼ 3.3. The reference soliton is plotted on the back-
ground. Displacements at which clusters are found are
marked by red dots (stable locations) and hollow circles
and squares (unstable locations). We show such displace-
ments only for Δy ≤ 0, since the picture is symmetric in
Δy. A first result of this analysis is that all collinear states
(Δy ¼ 0) are unstable against intersoliton interactions;
thus, our system does not support stable analogs of one-
dimensional clusters [11,12,49]. Hollow squares corre-
spond to states that are transversely stable but longitudi-
nally unstable, and vice versa for hollow circles. Physically,
it seems natural that collinear clusters are unstable because
a soliton exposed to the radiation of another one interacts
nonlinearly with waves having longitudinal and transverse
spread of wave vectors. Therefore, any imbalance in
frequency mixing processes will favor longitudinal or
transverse displacements. In addition to stable locations
(red dots), our theory also provides dynamical insight. The

relative motion of two interacting solitons can be
readily predicted by the streamlines of the vector field
exΔvx þ eyΔvy. Figure 2(a) shows 250 such streamlines
for soliton offsets within the dashed rectangle, which all
tend to stable locations.
Stability and dynamical predictions of interacting sol-

itons have been checked extensively via propagation
simulations and found excellent agreement. An example
is shown in Figs. 2(b)–2(e). In Fig. 2(b) we used as an input
at t ¼ 0 the exact (computed numerically) collinear two-
soliton cluster that was predicted to be unstable against Δx
displacements. Because of instability, two peaks approach
each other until the state is reached that is unstable only
against Δy displacements, Fig. 2(c). Further propagation
leads to the displacement [Fig. 2(d)] of the rightmost
soliton towards the theoretically predicted stable location
[Fig. 2(e)], where it remains from t ¼ 50 to huge times
t > 104. Remarkably, the soliton path on the xy plane
practically coincides with the theoretical streamline (white
solid path). Details on all numerical methods are provided
in the Supplemental Material [44].
Clusters of multiple CSs.—In the light of the above

results, it is natural to expect very rich families of CSCs in
cylindrical microcavities. Figure 3(a) shows selected exam-
ples of such families for single-peak CSs and CSCs
consisting of two and three CSs. In order to clearly
distinguish all families we plot the norm, N ≡ ∬ jψðx; yÞ −
ψ0jdxdy versus detuning. Two-CS collinear (Δy ¼ 0)
clusters are seen to bifurcate either from the single-peak
solitons or directly from the cavity background. In Fig. 3(a),
the latter CSCs have the two CSs with equal amplitudes and
thus correspond to the unstable CSCs in Fig. 2.

FIG. 2. (a) Theoretically predicted displacements correspond-
ing to two-soliton cluster formation, when one soliton is centered
at Δx ¼ Δy ¼ 0 (gray scale background): solid circles denote
stable equilibria while hollow circles and squares denote unstable
equilibria for the locations of the second soliton (see text). Solid
curves show predicted streamlines describing relative motion of
the two solitons when initial spatial offsets are within the dashed
rectangle. Inset in (a) is an enlargement of the streamlines in the
dashed rectangle. (b)–(e) Snapshots corresponding to direct
numerical propagation of two-soliton cluster corresponding to
unstable equilibrium: Δx ¼ −6.25, Δy ¼ 0. White line shows the
associated theoretical streamline. Panel sizes, x × y, are 40 × 10,
B3 ¼ 0.7, δ ¼ 3.3.

FIG. 3. (a) Norm versus detuning for single CSs and selected
clusters of two and three solitons at B3 ¼ 0.7. Thick (thin) curves
denote stable (unstable) branches. (b)–(e) Profiles in spatial
(b),(d) and frequency (c),(e) domains of stable clusters with
two (b),(c) and three (d),(e) solitons at δ ¼ 3.3. Dashed curves in
(c) and (e) mark the calculated resonant wave numbers from
Eq. (2). Axes are (b),(d) x ∈ ½−20; 20�, y ∈ ½−5; 5� and (c),(e)
kx ∈ ½−6; 6�, ky ∈ ½−12; 12�.
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Branches corresponding to CSCs with noncollinear
arrangements are shown in Fig. 3(a) for the cases of two
(solid red) and three (solid blue) solitons. Profiles in spatial
and frequency domains are shown for δ ¼ 3.3 in Figs. 3(b)
and 3(d) and Figs. 3(c) and 3(e), respectively. The two-
soliton cluster in Fig. 3(b) corresponds to the equilibrium
point Δx ¼ −5.56 and Δy ¼ −2.40 in Fig. 2(a). Note that
locations Δy ¼ �2.40 are equally favorable for cluster
formation. Populating both of them results in the three-
soliton cluster in Fig. 3(d); therefore its structure is also
remarkably well predicted by the theory. Noncollinear two-
soliton clusters (including their radiative tails) are clearly
asymmetric along the y and ky axes. Hence, transverse
recoil effect is possible and leads to the displacement of the
spectral maximum associated with soliton into the point
with nonzero ky. Because of this, all transversally asym-
metric clusters, like the one in Fig. 2(e), acquire small
transverse velocities vy (jvy=vxj≲ 10−2, see Supplemental
Material [44]) that transform circular orbits into helices,
leading to transport of light along the cylinder’s axis. On
the contrary, transversally symmetric clusters, like those in
Figs. 2(b), 2(c), and 3(d), have only nonzero longitudinal
velocity, vx, keeping circular orbits.
Instabilities and cluster expansion.—Dynamics of the

unstable two-dimensional CSs and CSCs is very rich.
Figure 4 illustrates a cascaded process triggered by a single
unstable CS at δ ¼ 2.95, shown in Fig. 4(c). Instability in
this case first leads to the spontaneous formation of the two-
peak collinear state in Fig. 4(d). Such a collinear state is
unstable, as predicted, and reshapes into an off-axis pair
[cf. Fig. 4(e)]. The rightmost intense part of the radiation
front eventually gives birth to a third CS [Figs. 4(f) and
4(g)] that drifts back towards y ¼ 0. Because the new CS is
born with a small transverse drift with respect to its parent,
the drift will necessarily be downside until the predicted

equilibrium location is reached, in agreement with
Fig. 2(a). This cascaded process results in the formation
of a zigzag-shaped cluster [Fig. 4(h)]. The appearance of
new CSs leads to temporal spikes in peak amplitude and
ladder steps in norm, as apparent from Figs. 4(a) and 4(b),
respectively. Generation of new CSs is a stimulated process
typical when background has inhomogeneities (see, e.g.,
Refs. [50,51]). This cascaded process is arrested when the
pattern extends all over the cavity length or when the
detuning is slightly increased and moved into the stability
domain for single CSs. While in the former case the pattern
becomes chaotic, in the latter case the zigzag cluster breaks
into off-axis pairs and single-peak CSs (not shown).
Instabilities may result in spontaneous formation of

larger stable CSCs. This is a remarkable dynamical feature
of this system, as instabilities, easily triggered via cavity
detuning, become beneficial for exciting complex states
without the need to construct them from individual CSs
placed in predetermined locations. Figures 5(a)–5(d) show
an example of this situation, stimulated by an unstable
three-peak cluster at t ¼ 0 [cf. Fig. 5(a)]. Similarly to
dynamics in Fig. 4, the intense radiation peaks stimulate the
formation of two new solitons [Fig. 5(b)] that shift towards
the center, Fig. 5(c), as dictated by the radiation tails they are
exposed to. When they approach each other, as predicted in
Fig. 2(a) for Δx ¼ 0, they start repelling one another and
settle into a stable equilibrium. Moreover, their radiation
fronts strongly interfere and a sixth soliton appears at the
front, locking the ensemble together to form a stable cluster,
represented in Fig. 5(d). Interestingly, this complex cluster
can be used to form larger stable CSCs, like the 11-peakCSC
in Fig. 5(e).
The existence of stable finite-size CSCs formed by

optical pulses with extended radiative tails, cf. Figs. 3(b),
3(d), 5(d), and 5(e), having no one-dimensional analogues,

FIG. 4. Temporal evolutions of (a) peak amplitude and (b) norm
of the unstable CS at B3 ¼ 0.7, δ ¼ 2.95. Numbers in (b) indicate
number of solitons contained in the pattern. (c)–(h) Profiles of the
intracavity field for selected times (see labels) illustrating the
zigzag cluster formation. Panel sizes (x × y) are (c)–(g) 30 × 12
and (h) 150 × 12.

FIG. 5. (a)–(d) Formation of a stable six-peak CSC from an
unstable three-peak one: B3 ¼ 0.7, δ ¼ 3.02. (e) Stable 11-peak
cluster built from the CSC in (d). Labels indicate temporal
instants (a)–(c) or intervals (d),(e) at which profiles are observed.
Panel sizes (x × y) are (a)–(d) 50 × 12 and (e) 50 × 24.
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is the central result of this Letter. Up to now, stable patterns
in Eq. (1) were only known with B3 ¼ 0 and in the form of
infinitely extended hexagonal arrangements [52,53]. Our
results motivate experimental investigation of suggested
structures, which could find applications in multichannel
soliton sources, that do not require structuring of dielectric
rods into stacks of microrings.
Conclusions.—We introduced a new class of stable

multidimensional CSs in monolithic cylindrical microcav-
ities exhibiting pronounced and polychromatic conical
radiation tails. We showed that modulations induced by
these tails strongly break CS symmetry and draw a complex
effective potential ruling interaction of CSs, which can be
understood with the presented soliton clustering theory.
Equilibrium points were found to exist at a priori counter-
intuitive spatial locations, leading to intrinsically two-
dimensional and highly nontrivial stable clusters with no
lower-dimensional analogues. Our results are physically
rich and bring fundamental insights into the physics of
cavity solitons.
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