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We theoretically show that the frequency and momentum of a photon are not necessarily proportional
to one another at low frequencies in photonic crystals comprising materials with positive- and negative-
valued material properties. We rigorously determine closed-form conditions for the light cone to emanate
from points other than the origin of k space, ultimately decoupling the first band from the origin and
demonstrating light propagation at zero energy with nonzero crystal momentum. We also numerically
show that first bands can originate from an arbitrary Bloch coordinate as well as from multiple
coordinates simultaneously.
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When a photon propagates through a dielectric medium at
low frequencies, it satisfies the energy-momentum (E − k)
relation E ¼ cℏjkj, where c is the phase velocity in the
medium [1,2]. This relation ensures that at zero energy, the
photon possesses zero momentum. Fundamental relations of
this type are prevalent throughout nature and are not isolated
to photons, e.g., electrons propagate through a crystal lattice
as E ¼ ℏ2=ð2meffÞjkj2 at low energies, where meff is the
effective mass [3]. This proportionality is fundamental for
the study of particles and fields in relativistic mechanics,
particle physics, and quantum mechanics.
In this Letter, we break the conventional low-frequency

E − k proportionality for photons, obtaining relations of
the form E ¼ Cjk − Ξj, where Ξ denotes a high-symmetry
point of the reciprocal lattice and k is the crystal
momentum [see Figs. 1(a)–1(c)]. This is achieved in
two-dimensional photonic crystals comprising materials
with positive-definite and negative-definite [4–6] optical
properties. We present explicit conditions on the constitu-
ent properties and explicit forms for the proportionality
constants C, for all high-symmetry coordinates of a square
lattice. Furthermore, we numerically demonstrate the
existence of other novel low-frequency behaviors, includ-
ing photonic crystals with E ¼ C1jkj þ C2jk −Xj, where
Cj are proportionality constants and X is a high-symmetry
point [see Fig. 3(e)]. Such unconventional behavior
contrasts the standard outcomes for light in photonic
crystals, where either E − k proportionality is supported,
or there exists a complete band gap [7], at low frequencies.
In the nonstandard photonic settings we describe, mass-

less photons are predicted to propagate as massive polar-
itons which travel superfluidically through the medium [8].

Consequently, our findings have the potential to motivate
the development of new photonic devices, and to deepen
our understanding of light in structured media. The
behaviors we describe complement existing observations
in optical systems incorporating negative-definite materi-
als, such as folded band surfaces with infinite group
velocities [9], cloaking and superresolution [10,11], and
new types of band gaps [12]. Analogies to our low-
frequency E − k relations may be found in the electronic
properties of transition-metal perovskites, where the first
band is centered about high symmetry points other than the
origin [13,14].
We begin by considering the modes of the time-harmonic

form of the source-free Maxwell equations in a nondisper-
sive and lossless system with Bloch vectors k ¼ ðkx; ky; 0Þ.
This wave vector restriction reduces Maxwell’s equations to
the Helmholtz equation

∇⊥ · ðε−1r ∇⊥HzÞ þ ω2c−20 μrHz ¼ 0; ð1Þ

for fields polarized asH ¼ ð0; 0; HzÞ. Here, ∇⊥ ≡ ð∂x; ∂yÞ,
εr is the relative permittivity, μr the relative permeability, ω
the angular frequency, and c0 is the speed of light in vacuum.
We consider an array of infinitely extending isotropic
cylinders, periodically positioned in the ðx; yÞ plane at the
coordinates of a square lattice, and which are embedded in
an infinitely extending isotropic background material. In the
background and cylinder domains, material constants are
allowed to be negative valued. At the cylinder edges we
impose continuity conditions, and between unit cells we
imposeBloch-Floquet conditions. This admits the system [15]
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NlBl þ
X∞

m¼−∞
ð−1ÞlþmSYm−lBm ¼ 0; ð2Þ

where SYm ¼ SYmðωB;kB; nbÞ denotes lattice sums (see
Supplemental Material [16]), ωB ¼ ω=c0, kB ¼ ðkx; kyÞ,
Bm are amplitudes of the cylindrical-harmonic basis functions,
and Nm are inverse cylindrical-Mie coefficients. Where
applicable, subscripts b and c denote the background and
cylinder properties, respectively. The dispersion equation for
the crystal is given by the vanishing determinant of (2), which
we truncate to dipolar order.
We now outline the procedure for determining when a

low-frequency band surface emerges from the Γ point.
First, we evaluate expansions for Nm in ωB (these are
lengthy, see Supplemental Material [16]). Next, we deter-
mine closed-form expressions for the SYl in (2) at low
frequencies and about the Γ point; these are obtained
following Chen et al. [31] (also extensive, see
Supplemental Material [16]). Assuming that ωB ¼ αkB,
where α is real and positive valued, we subsequently obtain
series coefficients for SYl in ωB alone. Substituting the
expansions for Nm and SYl into (2), the zero determinant
condition is satisfied to the lowest order for α such that

ωB ¼
�
1

εb

�
1þ fτ
1 − fτ

�
1

μb þ fðμc − μbÞ
�

1=2
kB; ð3Þ

where τ ¼ ðεb − εcÞ=ðεb þ εcÞ, f ¼ πa02=a2 is the filling
fraction, a0 denotes the radius of the cylinders, and a is the
lattice period. Thus, the constituent permittivity and per-
meability values can be negative, but provided α > 0 then a
band surface will emerge from Γ. Here, α ¼ 1=neff where
neff is the effective refractive index [15].
Next, we determine the conditions and asymptotic

behavior of a band that emerges from the M point at
low frequencies. As before, we derive asymptotic forms for
the SYl sums near M (see Supplemental Material [16]) and
assume ωB ¼ α0k0B, where α0 is real and positive valued,

k0
B ¼ kB −M and M ¼ ðπ=a; π=aÞ. This assumption

yields series coefficients for SYl in ωB (given in
Supplemental Material [16]). Substituting these expansions
for SYl and Nm into (2), the zero determinant condition is
satisfied to the lowest orders when

εc ¼ −εb; ð4Þ

and for α0 such that

ωB ¼
�

1

8π2
j64π4e4iθ0B þ Γð1

4
Þ8
����
1=2

×

�
εbμc þ 2εbμb log

�
16π2

fΓð1
4
Þ4
��−1=2�

k0B; ð5Þ

where ΓðzÞ is the Gamma function. That is, a band surface
is supported from M at low frequencies provided (4) and
α0 > 0 are satisfied. The condition εc ¼ −εb corresponds to
an anomalous resonance in quasistatic problems [32,33]
(discussed below).
Likewise, for the X point at low frequencies, having

derived asymptotic forms for the SYl sums near X (see
Supplemental Material [16]) we assume that ωB ¼ α00k00B,
where α00 is real and positive valued, k00

B ¼ kB −X, and
X ¼ ðπ=a; 0Þ. Substituting the resulting expansions for SYl ,
and Nm, into (2), the zero determinant condition is satisfied
to leading order when

εc ¼
�
ζ − 16π2

ζ þ 16π2

�
εb; ð6Þ

where ζ ¼ Γð1
4
Þ4f. At the next order, provided

μc ¼
�
ζðζ − 64π2Þ þ 512π4 log ½ζ=ð32π2Þ�

ðζ − 16π2Þ2
�
μb; ð7Þ

then we obtain the low-frequency dispersion relation

FIG. 1. Band diagrams for square array of cylinders embedded in air with (a) εc ¼ 1 and μc ¼ 2, (b) εc ¼ −1 and μc ¼ 2, and
(c) εc ≈ −0.53 and μc ≈ −10.22. Dashed red lines denote low-frequency descriptions (3), (5), and (8b), respectively. All figures use
lattice period a ¼ 1, radius a0 ¼ 0.3a, and dipolar approximation. Inset: first Brillouin zone with path parametrization ΓXM; first band
surfaces over first Brillouin zone.
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ωB ¼
�½16Γð1

4
Þ4π2 þ 64π4e2iθ

00
B − Γð1

4
Þ8e−2iθ00B �

16Γð1
4
Þ4π2εbμb

�1=2

k00B:

ð8aÞ
However, the slope in (8a) is only real valued along ΓX and
XM. Numerical investigations confirm elliptical contours at
low frequencies; interpolating between these paths with the
ansatz ω2

B ¼ α00xk002Bx þ α00yk002By we obtain

ω2
B ¼

�
16Γð1

4
Þ4π2 þ 64π4 − Γð1

4
Þ8

16Γð1
4
Þ4π2εbμb

�
k002Bx

þ
�
16Γð1

4
Þ4π2 − 64π4 þ Γð1

4
Þ8

16Γð1
4
Þ4π2εbμb

�
k002By; ð8bÞ

for the first band surface as ωB → 0 and as kB → X. Hence,
a band surface is supported from X at low frequencies
provided (6), (7), and εbμb > 0 are satisfied. In (6), the
proportionality factor is negative valued for f ≲ 0.914, and
the proportionality factor in (7) is negative valued for all f,
demonstrating that highly restrictive sign-changing con-
ditions must be satisfied in both εr and μr so that the first
band emerges from X. The number of conditions for each
high-symmetry Bloch coordinate is entirely due to the
different asymptotic behaviors of SYl . For arbitrary Bloch
coordinate origin, we anticipate that the number of con-
ditions will change significantly.
We now compare the asymptotic forms above against

results from a fully numerical treatment of (2) within the
dipole truncation. We begin by validating (3) for a regular
photonic crystal; in Fig. 1(a) we present the band diagram
of a representative crystal with εc ¼ 1 and μc ¼ 2
embedded in air (εb ¼ μc ¼ 1). As expected, the first
band emanates from the Γ point, and (3) shows excellent
agreement. In Fig. 1(b) we consider εc ¼ −1 and μc ¼ 2,
where the first band emanates from the M point as
described by (5) at low frequencies, also with excellent
agreement. In Fig. 1(c) we consider εc ≈ −0.53 and μc ≈
−10.22 satisfying (6) and (7). Here, the slope differs along
ΓX and XM, demonstrating twofold symmetry as ωB → 0.
The asymptotic estimate (8a) shows excellent agreement

near X at low frequencies. The diagram also possesses
folded bands [9] at high frequencies.
In Fig. 2 we present isofrequency contours for the first

band surfaces of the photonic crystals considered in Fig. 1,
over a quarter of the first Brillouin zone. In Fig. 2(a) we see
a cone (∞ symmetric) as ωB → 0, whereas in Fig. 2(b) we
observe fourfold symmetric contours, as expected from the
expð4iθ0BÞ dependence in (5). In Fig. 2(c) we see that the
first band has twofold symmetric contours, as expected
from (8b). These low-frequency symmetries contrast with
the electronic band diagrams of graphene (and photonic
analogues to graphene) where the high-energy band ema-
nates from the K point and about the Fermi energy EF as an
ideal cone [34–36].
Having numerically validated the E − k relations (3), (5),

and (8), we now briefly demonstrate that magnetic con-
stituents are not necessary to observe exotic low-frequency
behaviors. Low-frequency descriptions of nonmagnetic
photonic crystals emanating from Γ and M are obtained
by the replacements μb, μc ↦ 1 in (3) and (5) above. This is
despite the fact that the Nm coefficients for nonmagnetic
crystals exhibit different leading order behavior for small
ωB (see Supplemental Material [16]). However, the new
leading-order behavior of Nm yields a nonmagnetic ana-
logue to (7) of the form

ζ þ 8π2 − 16π2 log ½ζ=ð32π2Þ� ¼ 0; ð9Þ

which is not satisfied for any f. As such, low-frequency
emanation from X as ωB ¼ α00k00B or ω2

B ¼ α00xk002Bx þ α00yk002By is
not supported for nonmagnetic crystals.
In Fig. 3 we present first band(s) for a selection of

crystals comprising nonmagnetic cylinders (μc ¼ 1) in air,
and describe their evolution as εc is varied from
0 < εc ≤ −2.1. For values 0 > εc ≳ −0.5274 (6), a single
first band emanates from the Γ point, analogously to the
Γ-emerging band in Fig. 3(a). At εc ≈ −0.5274, a band
emerges from the X point, giving rise to two first band
surfaces at low frequencies, as in Fig. 3(a). This X-emergent
surface eventually forms adouble degeneracy at theΓ point at
εc ≈ −0.56, and thereafter, as shown in Fig. 3(b), becomes

FIG. 2. Isofrequency contours of first band surface ω=c0 for configurations in Fig. 1.
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the first band surface, pushing the existingΓ centered band to
higher frequencies. Aswe proceed in εc, the origin of the first
band travels along theΓM andΓX symmetry planes to theM
point at εc ¼ −1 (the anomalous resonance condition), as
shown in Fig. 3(c). Thereafter, a new first band emerges at the
M point whose origins move along high symmetry planes
towards the Γ point. At the same time, this emergent band
pushes the existing M centered band to higher frequencies.
Both of these behaviors are demonstrated in Fig. 3(d). The
new first band eventually takes the form given in Fig. 3(e)
where it emanates from both the Γ and X points simulta-
neously at εc ¼ ðζ þ 16π2Þ=ðζ − 16π2Þ ≈ −1.896. As we
proceed in εc, the first eigenfrequency atX becomes nonzero
and the first band emanates from the Γ point alone, as
demonstrated byFig. 3(f). Undoubtedly further behaviors are
observed beyond εb < −2.1; however, this falls outside the
scope of the present work. Note that in Figs. 3(c) and 3(f) the
dipolar approximations (5) and (3) are superposed, respec-
tively, and show excellent agreement at low frequencies. The
examples above, in consideration with (9), emphasize that
the absence of a band froma singleBloch coordinate does not
preclude the emergence of bands from multiple Bloch
coordinates simultaneously; this observation has important
implications for determining the existence of band gaps at
low frequencies. We emphasize that the band structure
smoothly transitions between the examples shown above.
In summary, we have determined new low-frequency

E − k relations for photons in 2D photonic crystals. These

relations, and the conditions for their existence, are given
explicitly for first bands with origins at the Γ, X, and M
points of a square lattice. In general, we have found that
sign changes in the properties of the constituents are
required for the first band to originate from coordinates
away from Γ at low frequencies. We have also demon-
strated that photonic crystals can possess low-frequency
E − k relations with origins at one or more arbitrary Bloch
coordinates. Given that all conventional photonic crystals
possess either a low-frequency band gap or a band surface
emanating from Γ, this work has significant implications
for the homogenization of periodic media, theoretical
descriptions of light propagation in complex media, as
well as future photonic crystal designs. In the latter case,
the closed-form conditions we obtain represent a powerful
design tool for determining filling fractions and back-
ground materials for a given cylinder material, and vice
versa. However, an important consequence of the M-point
condition coinciding with the anomalous resonance con-
dition is that the slope of the M-emerging band (5) is not
necessarily accurate beyond a dipolar truncation; further
investigations are required to accurately determine behav-
iors near resonance (see Supplemental Material [16]).
Preliminary results for hexagonal lattices at the anomalous
resonance reveal a band surface emerging from theK point,
implying that the first band originates from the furthest
edge of the irreducible Brillouin zone when on resonance.
Away from the anomalous resonance condition, we believe

FIG. 3. Band diagrams for square array of nonmagnetic cylinders (μc ¼ 1) embedded in air (εb ¼ μb ¼ 1) with (a) εc ¼ −0.55,
(b) εc ¼ −0.58, (c) εc ¼ −1, (d) εc ¼ −1.1, (e) εc ≈ −1.896, and (f) εc ¼ −2.1. Dashed red lines in (c) and (f) are approximations (5)
and (3), respectively. All figures use a dipolar approximation, lattice period a ¼ 1, and radius a0 ¼ 0.3a.

PHYSICAL REVIEW LETTERS 121, 103902 (2018)

103902-4



that experimental validation is feasible for the crystals
we describe, as all emergence conditions [i.e., (6) and (7)]
are valid for complex-valued εb and μb. When εb and μb
possess moderate loss, and εc and μc satisfy the necessary
emergence conditions, we find the band diagrams to be
unchanged (see Supplemental Material [16]). A natural
next step for this work is 1D and 3D photonic structures;
2D photonic crystals were only chosen for analytical
convenience. Finally, we emphasize that our approach
extends readily to phononic and other systems.
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