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The generation of entanglement between disparate physical objects is a key ingredient in the field of
quantum technologies, since they can have different functionalities in a quantum network. Here we propose
and analyze a generic approach to steady-state entanglement generation between two oscillators with
different temperatures and decoherence properties coupled in cascade to a common unidirectional light
field. The scheme is based on a combination of coherent noise cancellation and dynamical cooling
techniques for two oscillators with effective masses of opposite signs, such as quasispin and motional
degrees of freedom, respectively. The interference effect provided by the cascaded setup can be tuned to
implement additional noise cancellation leading to improved entanglement even in the presence of a hot
thermal environment. The unconditional entanglement generation is advantageous since it provides a
ready-to-use quantum resource. Remarkably, by comparing to the conditional entanglement achievable in
the dynamically stable regime, we find our unconditional scheme to deliver a virtually identical

performance when operated optimally.
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Entanglement is a peculiar property of quantum physics
and a key technological resource in quantum information
processing [1] and quantum metrology [2,3], allowing
improvements of atomic clocks [4,5] and optical magne-
tometers [6,7]. Moreover, entanglement is often used to
delineate the boundary between classical and quantum
physics. Generating entanglement for ever-larger objects
therefore establishes the reach of quantum mechanics into
the macroscopic realm. Entanglement between separate
macroscopic systems has already been realized with pairs
of atomic vapor ensembles [7-9] and diamonds [10] at
room temperature, and mechanical oscillators at cryogenic
temperatures [11,12]. However, generation of entanglement
in hybrid systems composed of disparate macroscopic
objects is an outstanding challenge—in particular due to
the presence of the hot thermal environment. Such hybrid
entanglement would combine attractive features of very
different systems as required to realize complex quantum
information networks [13].

In this Letter, we devise an efficient scheme for uncondi-
tionally entangling two macroscopic systems with poten-
tially very different decoherence properties. The scheme
works for two generic bosonic oscillators coupled linearly
to a unidirectional traveling light field, with the extra
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provision that their effective masses have opposite signs.
A negative mass oscillator in the entanglement context was
first used in Ref. [8], and further extensively developed for
collective degrees of freedom in polarized spin ensembles
prepared in an energetically inverted state [14,15] such as
in atomic ensembles at room temperature in free space
[16,17], cold atoms in Bose-Einstein condensates [18],
optical cavities [19,20], or trapped in one-dimensional
arrays [21,22] as well as in solid-state ensembles of
nitrogen-vacancy centers [23] and quasispins of rare-
earth-ion doped crystals [24,25]. The positive mass sub-
system can, naturally, be implemented in a wider range of
systems, in particular in motional degrees of freedom,
e.g., the center-of-mass motion of ensembles of atoms
[20,26,27] or ions [28] and micromechanical oscillators
[11,12,29-31]. A motional degree of freedom can also
implement an effective negative mass by employing two-
tone driving schemes [32] (see also Ref. [33]).

An essential mechanism of our scheme is coherent
quantum noise cancellation (CQNC) of the backaction
(BA) of light on the two oscillators. This hinges on the
observation that for two oscillators with masses of opposite
signs, m, = —m_ :=m > 0, we have (d/dt)[X, +X_] =
[P, — P_]/m for which [X, + X_,P, — P_] =0, where
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X, and P, are canonical conjugate variables for the
positive (negative) mass oscillator. Hence, this pair of
variables is classical in the sense that the Heisenberg
uncertainty relation imposes no constraint on the simulta-
neous knowledge of them [8,14,15]. This is possible because
(for ideally matched oscillators) the associated measurement
BA goes into the canonically conjugate joint variables, while
interfering destructively in the BA-free variables. Measuring
the latter beyond the Heisenberg limit of the individual
systems entails entanglement between the two oscillators.
CQNC based on this principle has previously been analyzed
theoretically in the context of sensing beyond the standard
quantum limit (SQL) [14,34-38] and realized experimentally
using two mechanical oscillators [32] and in a spin-optome-
chanical hybrid system [39]. It has also been analyzed as a
means of entangling two atomic spin [40,41] or mechanical
[35,42] systems as has been demonstrated in experiment
[7-9,12].

However, the theoretical studies have mostly focused on
oscillators with identical or negligible intrinsic linewidths,
a condition which is difficult to meet in practice for
disparate hybrid systems. The present scheme circumvents
this restriction by interfacing the two oscillators unidirec-
tionally. The resulting causal asymmetry permits efficient
CQNC even for vastly different intrinsic linewidths,
thereby facilitating entanglement generation.

Model.—We consider a generic hybrid system com-
posed of two subsystems with effective masses sgn(myg) =
—sgn(my;) < 0 coupled to a unidirectional optical field
[Fig. 1] (near-ideal unidirectionality has been achieved
experimentally, e.g., see Refs. [7,39]). Both subsystems
are driven by individual thermal reservoirs. The positive
(negative) mass subsystem is referred to as a motional [M]
(collective spin [S]) degree of freedom and represented by
a localized bosonic mode with dimensionless canonical
variables. These variables satisty [X W =16, (ke
{M,S}) resulting from a rescaling by the zero-point
fluctuation amplitudes x; ¢ = \/7/(|m;|®;) and p; .o =
h/x; ,pr» Where ; is the resonance frequency. The free
evolution of the hybrid system is (setting 7 = 1)

N

H():

S sen(m) 2 (%3 + PY), (1)
2

jE{M.S}

and hence a negative mass translates into a negative
effective resonance frequency Q; =sgn(m;)w; for the
dimensionless variables, 1nvert1ng the sense of rotation
in the {X s P 7} phase space (Fig. 1) and making the state
with zero quanta its highest energy state (not to be
confused with a positive mass oscillator with an inverted
potential, A, « —)A(? + IA’f). We specialize to the resonant
scenario wy = wg = o.

We introduce annihilation operators for the localized

modes, X = (a; )/\/_ and P = (a; - a; )/(\/21)

Carrier ---
O(F]p 0(er

Homodyne
verification

FIG. 1. Hybrid system consisting of two oscillators with
negative and positive mass, respectively, typically implemented
in collective spin (S) and motional (M) degrees of freedom. These
are coupled in cascade to a common unidirectional light field via
quadratic interactions induced typically by a strong, classical
carrier. For each oscillator, this results in Stokes and anti-Stokes
sidebands proportional to rates I';p/ 5 and of width y;, j € {S, M}
(see inset); the effective resonance frequency Q; = sgn(m;)w;
accounts for, e.g., the fact that energy must be extracted from a
negative-mass oscillator to excite it. The joint interaction with the
light field is best described by homodyne quadratures X, P,
(symmemzed combinations of sidebands), whose initial state
b'¢ Lins P, in 1s vacuum (see lower part of figure). The negative
mass system is driven by X, ;, only (I'sp = I'sz) and its response
is mapped onto P, . The positive mass system is likewise coupled
to )A(L.m, but also to P, (Typ < Typ) at an adjustable rate R, so
that the response of the negative mass system drives the positive
mass system. Consequently, the response of the positive mass
system will interfere destructively with that of the negative mass
system in the outgoing field quadrature P L.out s can (optionally)
be verified by homodyne detection. Additionally, the oscillators
are driven by distinct thermal reservoirs with decoherence rates
¥jo (wavy arrows).

and the propagating field linking them, b(t) = (2z)"'/2
I, Q)e"g’ dQ (defined in a rotating frame with respect
to the optical carrier). The Hamiltonian for two-mode
quadratic interaction between the localized oscillators
and the light field is [40,41]

I:Iint: Z [\/_&Tl;( )

Jje{m.s}

FJP&;I;T(IJ) + H.C.],

(2)

where we assume fg < f;,; i.e., the optical field interacts
with § first. Equation (2) comprises two kinds of inter-

action: beam splitter (B), o (&;13 + H.c.), and parametric
« (afb" +He), je{M.S}.
These processes produce sidebands at rates I'jp =
I;sin*6;,I;p =T, cos®8; (Fig. 1, inset), which we para-
metrize by I'; = I';5 +T';p and 6; € [0, z/2], the coupling
rates and angles.

An excitation in the upper sideband from the positive-
(negative-)mass ~ oscillator arises  from /Ty payb"
(vTspash"), simultaneously removing (adding) an oscil-
lator quantum (analogously for the lower sideband).

down-conversion  (P),
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This indistinguishability of adding a quantum to one
subsystem and removing one from the other as energy is
either added or removed by the common light field permits
the system to be driven into a two-mode-squeezed
entangled state accompanied by CQNC of the BA con-
tribution to the joint output field. Perfect indistinguish-
ability necessitates [y =I'gp and I'yp =Tgp, i.e,
0y = —0g+r/2 and T'y; =T, but also the temporal
responses of the subsystems must be suitably matched.
However, whenever 0,, # ¢ there is an overlap between
the light quadrature reading out S and the quadrature
driving M; i.e., the spin response to light and thermal
forces drives the motional mode. This induces a tunable
interference effect that can implement additional quantum
and classical noise cancellation even for highly asymmetric
subsystems, leading to unconditional entanglement gener-
ation competitive with conditional schemes—this is the
main finding of this Letter.

The regime of interestis w; > I'; X 7; 0, Where ;¢ is the
thermal decoherence rate, providing the time-scale sepa-
ration required for probing the system over several quan-
tum-coherent oscillations. This permits treating Eq. (2) in
the rotating wave approximation (RWA), i.e., retaining only
slowly varying terms, and implies that the interaction with
light is confined to two disjoint sidebands b_(r)+
b (1) = (2r)72( [0 + J&)b(Q)e™¥dQ = b(1), [b.(1).
bl ()] = 8(r— 1), centered at frequencies Q =F w (rel-
ative to the carrier). We introduce the non-Hermitian
homodyne two-mode quadratures X, := (b, + b')/\/2
and P, := (b, — b')/(/2i). Performing the RWA we find
Hi = a)y\/Ty Qg (1) + a5\/Ts0 g, (1s) + He.,  (3)
where Qy =cos@X, +isin0'P,, 0. =0;—n/4.
Equation (3) indicates that the cosine and sine components
of the phase quadrature  P; + f’z read out the (unnormal-
ized) EPR-type variables /Ty, cos 04, X, + +/T's cos 0 X s
and /Ty cos @), Py — /T'g cos 0Py, respectively. These
commute when /T"y; cos ), = /T’s cos &, in which case
they can be BA-free.

Eliminating the light field and using a co-propagating
time coordinate ¥ =t — x/c (dropping the prime hence-
forth), the Heisenberg-Langevin equations can be
expressed in terms of the forces j‘j = /Y704 in —|—]A‘j’BA
as [henceforth @; is in the rotating frame of H o (1)] [43-45]

d, TS ~
ns = 205+fs,
d N

where

}S,BA = —i( FSB[;—,in + FSPgTJr,in)’
J}M,BA = —ivV1—e(y FMBB+,in +V FMPE:in)
- l\/E( V l—‘MBZ;-F,in/ + V 1—‘MPl;—,ian)‘ (5)

Here, an additional uncorrelated vacuum lS’iin impinges
on M due to transmission (power) loss € > 0 between the
subsystems. The vacuum fields satisfy <I;i.in(t)f9l,m(t’ )=
(b (DL (1) =0(1=1). [8;50(0). 8}, (1)) = 8(1 = 1),
Jj € {M, S}, represent the thermal noise fluctuations with
<&j‘in(t)2z;in(t’)) = (; 4+ 1)6(¢ — ') in terms of the thermal
occupancy 71;. For example, for S, iig > O represents the
additional noise present for an imperfectly polarized
ensemble, while for M, 7y ~ kgTy;/(hwy) at ambient
temperature T,, (kz is the Boltzmann constant). The
effective linewidths (including dynamical broadening
from the light field coupling) are denoted y; =y~
I';cos(26;), where y;, is the linewidth in absence of
dynamical broadening; dynamical stability requires
y; > 0. Finally, due to the unidirectionality of the light
field, information can only propagate from the first to the
second subsystem in the cascade. The corresponding
unidirectional coupling rate is R=+/Tsgl y;p—+/T a8l sp =
—Tylssin(0y,—65). For R=0< 05 =0,, Egs. (4)
decouple so that correlations build up solely due to those
between ]ACS,B A and ]ACM,B A, and the ordering of oscillators
becomes immaterial (assuming ¢ = 0). In contrast, R # 0
gives rise to a nontrivial asymmetry of the cascaded system
(4), which is exploited below for improved noise cancella-
tion and entanglement generation.

Unconditional steady-state solution.—The steady-state
solution to Egs. (4) is

t A
as(1) = / d =02 (7).

[Se]

t ~
(1) = / A {e==ml2F, ()

n 2v/1—€R
Ym—Ys
For R = 0, the steady states of the individual subsystems

are determined solely by the (stochastic) driving forces in
the past time interval of duration ~1/y;. Hence, whenever

=015/ _ e~=" /2P ()}, (6)

yu # vs the different temporal responses to the BA lAJi,in
will result in imperfect CQNC. However, if it is the second
system (M) in the cascade which is relatively short-lived,
Yu > Vs, then for R # 0 the unidirectional coupling term
x Rag [Eq. (4)] effectively prolongs the memory time 1/y,,
by driving M with the spin response contained in the light
field, resulting in improved CQNC for R < 0 & 6,, > 0.
Ideal cancellation can be achieved in the adiabatic limit
Yu > vys and 2R/y, — —1 (for € = 0) [Eq. (6)], which is
compatible with the demand for near-ground-state dynami-
cal cooling of the motional mode y, > 7,0, where
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7i0=7j0(f; +1/2). The additional interference arising
for R < 0 does not rely on the opposite signs of masses (in
contrast to the scheme as a whole) and can simultaneously
suppress both quantum noise and the spin thermal noise,
thereby removing the need for dynamical spin cooling.

From Egs. (6) the entries of the covariance matrix in
steady state are

~ 1 /T
APXg=— <—S+}7s,o> ;

rs\ 2
o 1 (T — o
AXMZ}/— 7+YM,O+ 1—€R<XS,XM> s
M
A 2V 1— A
(X Xu) = - 6<\/FSFMsin(6M+63)—2RA2XS),
YsTVYm

()
where <XS7XM> = <XSXM> —+ <XMXS> —2<5(5> <XM> As our
entanglement figure of merit we consider the variance of
generalized EPR variables of the form [46,47]

_ A2(Xs + gXy) + A2 (Pg — gPy)
1+ ¢

which is the inseparability criterion for Gaussian states and
any g € R. The steady-state value of £, can be evaluated
using the solution (7), noting that A%(Xg+ gX,)~
A?(Pg — gPy) within the RWA. In principle, &, can be
minimized over g, but verifying such entanglement exper-
imentally requires individual, and hence destructive, readout
of the two subsystems. Since our scheme automatically and
nondestructively produces readout of the EPR variables with
g=+/Ty/[(1 —€)'s]cosB),/ cos O [see discussion below
Eq. (3)], which can be BA-free when g — 1 and ¢ — 0, we
henceforth fix g by the aforementioned expression.

Spin-optomechanical implementation.—Let us consider
a spin-optomechanical implementation [16,48] [see
Ref. [49] for a derivation of Eqgs. (4), (5) in this context].
Optomechanical systems are routinely operated in the
quantum regime, allowing ground-state cooling by
dynamical broadening (yy > yyo < 0y > n/4) even
for 71y, > 1. For the mechanical system, y,, is usually
due to intrinsic dissipation alone, such as friction, whereas
for the spin oscillator, ygq (typically >y, o) is often
dominated by optical power broadening induced by the
coherent driving. For quantum cooperativities defined as
C;:=T}/7;0, the value of Cy is independent of the drive
power in this regime.

Conditional entanglement in a spin-optomechanical
system was previously analyzed for a pulsed quantum
non-demolition (QND) measurement of the hybrid EPR
variables [57] which projects the system into an entangled
state fulfilling Eq. (8); this approach has been demonstrated
for two atomic spin ensembles [8]. In contrast to that
protocol, steady-state unconditional entanglement is a
ready-to-use resource [9,58] available on demand at any
moment in time.

¢ <L (8

20f

15}

FIG. 2. Entanglement £, (<1 in the colored region) as a
function of quantum cooperativities of the spin (C) and motional
(Cyy) subsystems for optimized coupling angles 0 and 0, while
fixing the parameters ygo = 27 x5 kHz, iig =1, yp iy =
27 x 10 kHz, and assuming no transmission losses, € = 0.
Optimal Cj; for given Cy is indicated by the dashed-dotted
curve. Imposing the additional constraint fg =6, = R =0,
entanglement &, < 1 is only possible in the subregion delineated
by the solid contour.

Figure 2 presents the optimized unconditional steady-
state entanglement (8) as a function of C;, illustrating the
relaxation of parameter requirements compared to dissipa-
tive entanglement generation (R = 0, both subsystems are
driven optically only by the common vacuum field). Since
the tunability of free-space spin systems is limited by the
atomic density, we henceforth assume the bottleneck to be
the spin system, characterized by a maximally attainable
Cy, whereas C), is freely tunable and thus can be fixed at its
optimal value [Fig. 2, dashed-dotted curve]. Under these
conditions, optimization requires the two subsystems to be
coupled asymmetrically to the field: The optimal 9,, favors
beam-splitter interaction /2 > 0y o > 7/4, while for S,
the Stokes and anti-Stokes processes should be balanced,
Osopt ¥ /4 < Tgg~Tsp (QND interaction) yielding
R < 0 [Fig. 3, inset]; this is the scenario illustrated in
Fig. 1. The resulting effective motional linewidth consid-
erably exceeds that of S, y; > yg, in the regime of
substantial entanglement, thereby reversing the hierarchy
set by the intrinsic linewidths y,, ¢ < 750 while providing
strong dynamical cooling of the motional thermal noise
7m.0, Which is essential to unconditional operation. Since
ys~7Yso for Og~ /4, the suppression of spin thermal
noise is due mainly to coherent cancellation in contrast to
previous work relying on dynamical spin cooling in the
dissipative regime (R =~ 0) [9,40,41].

In the absence of transmission loss (¢ = 0), the asymp-
totic scaling of the unconditional entanglement is &£ ~

VIL+r+1/Q2as+1)]/(2Cs),  where  r = 7y0/7s0-
An improvement by up to a factor of 2 can be found
when comparing to the dissipative case (R =0), & ~

v/2(1 +r)/Cy (see Fig. 3; derivations of scalings are in

Ref. [49]). The presence of loss € > 0 imposes a lower

103602-4



PHYSICAL REVIEW LETTERS 121, 103602 (2018)

L
1072
W 0.1§10_3
(1074
1 10 10° 10°
Cs
FIG. 3. Entanglement &, as a function of spin cooperativity Cg

for optimized coupling arigles 6y, 0, and motional cooperativity
Cj; when R = 0 (thin black curves) and R # O (thick red curves),
when transmission loss is absent, € = 0 (solid), and present, € =
0.1 (dashed). (Inset) Plot of —2v/1 — eR/y,, (right scale, brighter
green curves) as a function of Cg used in evaluating the optimized
curves of the main plot, and the relative entanglement improve-
ment (left scale, darker red curves) of the conditional scheme over
the optimal unconditional scheme (referenced to the latter) for
€ = 0.1; the conditional performance is evaluated using param-
eters optimized for the unconditional scheme (dashed) and
optimal conditional parameters for QND readout 85 = 6,, =
7/4 (solid). The fixed parameters are ygo, = 27 x 5 kHz, ng = 1,
and yyy i1y = 27 x 10 kHz.

bound £, > /e/(4 — 3¢), which is also an improvement of
up to a factor of 2 compared to R = 0.

Comparison with conditional scheme.—Another bench-
mark is the conditional steady-state entanglement gener-
ated by performing a continuous homodyne measurement
of the light field emanating from the hybrid system [41].
The evolution of the system conditioned on the measure-
ment record is described by a stochastic master equation
[59] whose steady state can be found numerically and even
analytically in our regime of interest, 71, > 1 (see Ref. [49]
for mathematical details). For the fixed parameters con-
sidered above (Fig. 3), we find in the limit of substantial
entanglement that, remarkably, the conditional steady-state
entanglement matches that of our unconditional scheme
within a few-percent margin, even when separately opti-
mized under the same conditions in the dynamically stable
regime (see Fig. 3, inset; supplementary details in
Ref. [49]). We thus conclude that our unconditional scheme
leaves practically no information in the output light about
the noise affecting the squeezed EPR variables. From a
practical standpoint this is beneficial as it allows optimal
performance without the need to measure the output field
nor perform the feedback required to make the conditional
entanglement unconditional. Moreover, the dynamical
cooling of the motional mode occurring in the uncondi-
tional scheme facilitates technical stability in the apparatus.

In conclusion, unconditional steady-state entanglement in
a cascaded negative-positive mass hybrid system can be
efficiently generated by engineering an asymmetric inter-
action between the subsystems via the light field connecting
them. Applications for such a resource of ready-to-use
entanglement include quantum teleportation [60] and key

distribution [61] in hybrid quantum networks. The scheme
can compete with conditional schemes, a fact which we
speculate can be elucidated by formally framing our uncondi-
tional scheme in terms of a coherent-feedback master
equation. The noise cancellation technique inherent to the
scheme enables sub-SQL sensitivity when using the hybrid
system as a continuous force sensor, as will be elaborated on
elsewhere [62]. Moreover, we have evidence that this sensing
enhancement is closely linked to the generation of EPR-type
entanglement studied here [49], warranting further study.
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