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We address the Λ hypernuclear “overbinding problem” in light hypernuclei which stands for a 1–3 MeV
excessive Λ separation energy calculated in 5

ΛHe. This problem arises in most few-body calculations that
reproduce ground-state Λ separation energies in the lighter Λ hypernuclei within various hyperon-nucleon
interaction models. Recent pionless effective field theory (=πEFT) nuclear few-body calculations are
extended in this work to Λ hypernuclei. At leading order, the ΛN low-energy constants are associated with
ΛN scattering lengths, and the ΛNN low-energy constants are fitted to Λ separation energies (Bexp

Λ ) for
A ≤ 4. The resulting =πEFT interaction reproduces in few-body stochastic variational method calculations
the reported value Bexp

Λ ð5ΛHeÞ ¼ 3.12� 0.02 MeV within a fraction of MeV over a broad range of =πEFT
cutoff parameters. Possible consequences and extensions to heavier hypernuclei and to neutron-star matter
are discussed.
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Introduction.—Λ hypernuclei provide an extension
of atomic nuclei into the strangeness sector of hadronic
matter [1]. Experimental data on Λ hypernuclei are poorer,
unfortunately, in both quantity and quality than the data
available on normal nuclei. Nevertheless, the few dozen ofΛ
separation energiesBexp

Λ determined across the periodic table,
mostly for hypernuclear ground states, provide a useful test
ground for the role of strangeness in dense hadronic matter,
e.g., in neutron stars [2]. Particularly meaningful tests of
hyperon-nucleon (YN) strong-interaction models are pos-
sible in light Λ hypernuclei, A ≤ 5, where precise few-body
ab initio calculations are feasible [3].
The ΛN interaction is not sufficiently strong to bind two-

body systems. Hypernuclear binding starts with the weakly
bound 3

ΛHðI ¼ 0; JP ¼ 1
2
þÞ hypernucleus. No other A ¼ 3

hypernuclear level has ever been firmly established. The
A ¼ 4 isodoublet hypernuclei (4ΛH and 4

ΛHe) each have two
bound states, 0þgs and 1þexc. The hypernuclear s shell ends
with a single 5

ΛHeðI ¼ 0; JP ¼ 1
2
þÞ level. Table I demon-

strates in chronological order the extent to which several
representative few-body calculations overbind 5

ΛHe while
reproducing the BΛ values of all other s-shell hypernuclear
levels. This is known as the “overbinding problem” in light
Λ hypernuclei since the 1972 work by Dalitz, Herndon,
and Tang (DHT) [4], who used a phenomenological
ΛN þ ΛNN interaction model. The other, recent calcula-
tions listed in the table use the following methodologies:
(i) Auxiliary-field diffusion Monte Carlo (AFDMC) tech-
niques within a ΛN þ ΛNN Urbana-type interaction model
dating back to Bodmer, Usmani, and Carlson [5]. Note that,
while version AFDMCb [6] reproduces Bexp

Λ ð5ΛHeÞ as a
prerequisite to resolving the “hyperon puzzle” in neutron-
star matter [2], it underbinds the lighter s-shell hypernuclei

by about 1 MeV each and, thus, does not resolve the
overbinding problem as defined here. A revision of this
work [7] suggests that by modifying some of the ΛNN
strength parameters it is possible to avoid the underbinding.
(ii) No-core shell-model techniques within a leading-order
(LO) chiral effective field theory (χEFT) YN interaction
model, with momentum cutoff values of 600 (a) and 700 (b)
MeV=c, in which three-body ΛNN terms are induced
through ΛN ↔ ΣN coupling. The 5

ΛHe χEFT results listed
here were obtained by employing a similarity renormaliza-
tion group transformation [8], reducing the model-space
dimension in order to enhance the poor convergence met in
using bare YN interactions [9]. No χEFT calculations have
been reported yet for 5

ΛHe at next-to-leading order (NLO).
Excluding calculations using an uncontrolled number of

interaction terms, the only published few-body calculations
claiming to have solved the overbinding problem are those
by Nemura et al. [16]. However, it was realized by Nogga,
Kamada, and Glöckle [17] that a more faithful reproduction
of the Nijmegen soft-core (NSC) meson-exchange

TABLE I. Ground-state Λ separation energies BΛ and excita-
tion energies Ex (in MeV) from several few-body calculations of
s-shell Λ hypernuclei; see the text. Charge symmetry breaking is
included in the 4

ΛH results from Ref. [10].

BΛð3ΛHÞ BΛð4ΛHgsÞ Exð4ΛHexcÞ BΛð5ΛHeÞ
Exp. 0.13(5) [11] 2.16(8) [12] 1.09(2) [13] 3.12(2) [11]

DHT [4] 0.10 2.24 0.36 ≥5.16
AFDMCa � � � 1.97(11) [6] � � � 5.1(1) [14]
AFDMCb −1.2ð2Þ [6] 1.07(8) [6] � � � 3.22(14) [6]
χEFTa 0.11(1) [15] 2.31(3) [10] 0.95(15) [10] 5.82(2) [8]
χEFTb � � � 2.13(3) [10] 1.39(15) [10] 4.43(2) [8]
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potentials used in these calculations in fact underbinds
appreciably the A ¼ 4 hypernuclei. Thus, the overbinding
problem is still alive and kicking, with 5

ΛHe overbound by
1–3 MeV in the recent few-body calculations listed in
Table I.
The present work reports on few-body stochastic varia-

tional method (SVM) precise calculations of s-shell hyper-
nuclei, using Hamiltonians constructed at LO in a pionless
effective field theory (=πEFT) approach. This is accom-
plished by extending a purely nuclear =πEFT Hamiltonian
used in few-nucleon calculations, first reported in
Refs. [18,19] and more recently also in lattice-nuclei
calculations [20–23], to include Λ hyperons. With ΛN
one-pion exchange (OPE) forbidden by isospin invariance,
the =πEFT breakup scale is 2mπ , remarkably close to the
threshold value pth

ΛN ≈ 283 MeV=c for exciting ΣN pairs in
πEFT approaches [24]. A typical momentum scale Q in
5
ΛHe is pΛ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MΛBΛ

p ¼ 83 MeV=c, suggesting a =πEFT
expansion parameter ðQ=2mπÞ ≈ 0.3 for s-shell hypernu-
clei. This implies a =πEFT LO accuracy of the order of
ðQ=2mπÞ2 ≈ 9%. A somewhat larger value is obtained
by using a mean ΛN pair breakup energy in 5

ΛHe,
BΛN ¼ ðBΛ þ BNÞ=2 ¼ 12.1 MeV, to estimate pΛN ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μΛNBΛN

p
in light Λ hypernuclei. This yields pΛN ≈

111MeV=c and ðpΛN=2mπÞ2 ≈ 0.16. With past =πEFT Λ
hypernuclear applications limited to A¼3 systems [25,26],
ours is the first comprehensive application of =πEFT to the
full hypernuclear s shell.
As shown in this Letter, our few-body SVM calculations

of lightΛ hypernuclei in the =πEFT approach largely resolve
the overbinding problem for 5

ΛHe to the accuracy expected
at LO. Below, we expand briefly on the =πEFT approach, its
input, and the SVM few-body calculations applied in the
present work to light nuclei and hypernuclei. Possible
consequences of resolving the hypernuclear overbinding
problem in light hypernuclei and extensions to heavier
systems are discussed in the concluding paragraphs.
Application of =πEFT to Λ hypernuclei.—Hadronic sys-

tems consisting of neutrons, protons, and Λ-hyperons are
described in =πEFT by a Lagrangian density

L ¼ N†
�
i∂0 þ

∇2

2MN

�
N þ Λ†

�
i∂0 þ

∇2

2MΛ

�
Λ

þ L2B þ L3B þ � � � ; ð1Þ

where N and Λ are nucleon and Λ-hyperon fields, respec-
tively, and L2B;L3B;… are two-body, three-body, and, in
general, n-body interaction terms. The interaction terms are
composed of N, Λ fields and their derivatives subject to
symmetry constraints that L is scalar and isoscalar and to a
power counting that orders them according to their impor-
tance. At LO, the Lagrangian contains only contact two-
body and three-body s-wave interaction terms; i.e., L2B and
L3B are the sum of all possible N, Λ field combinations,

with no derivatives, that create an s-wave projection
operator. Thus, there is a one-to-one correspondence
between LO interaction terms and possible NN;NΛ;ΛΛ
and NNN;NNΛ;…s-wave states. Each of these terms is
associated with its own low-energy constant (LEC). In the
present work, we focus on single-Λ hypernuclei and, hence,
ignore all terms in L containing more than one Λ†

αΛβ

field pair.
Momentum-dependent interaction terms, such as the

tensor or spin orbit, appear at subleading order in =πEFT
power counting [18]. In particular, the long-range ΛN
tensor force induced by a ΛN → ΣN OPE transition
followed by a ΣN → ΛN OPE transition is expected to
be weak, because this two-pion exchange mechanism is
dominated by its central S → D → S component, which is
partially absorbed in the ΛN and ΛNN LO contact LECs.
Short-range K and K� exchanges add a rather weak direct
ΛN tensor force [27,28], as also deduced from several
observed p-shell Λ hypernuclear spectra [29].
The contact interactions of the Lagrangian L are regu-

larized by introducing a local Gaussian regulator with
momentum cutoff λ (see, e.g., [30]):

δλðrÞ ¼
�

λ

2
ffiffiffi
π

p
�

3

exp

�
−
λ2

4
r2
�

ð2Þ

that smears contact terms over distances ∼λ−1, becoming a
Dirac δð3ÞðrÞ in the limit λ → ∞. The cutoff parameter λ
may be viewed as a scale parameter with respect to typical
values of momentaQ. To make observables independent of
specific values of λ, the LECs must be properly renormal-
ized. Truncating =πEFT at LO and using values of λ higher
than the breakup scale of the theory (here ≈2mπ), observ-
ables acquire a residual dependence OðQ=λÞ which dimin-
ishes with increasing λ.
The resulting LO two-body interaction is given by

V2B ¼
X
IS

CIS
λ

X
i<j

PISðijÞδλðrijÞ; ð3Þ

where PIS are projection operators on NN, ΛN pairs with
isospin I and spin S and CIS

λ are LECs, fixed by fitting to
low-energy two-body observables, e.g., to the correspond-
ing NN and ΛN scattering lengths. In the present work, the
NN IS ¼ 01 LEC is fitted to the deuteron binding energy,
hardly affecting the results obtained alternatively by fitting
to the IS ¼ 01 scattering length. The scattering lengths
used to fit the LECs are listed in Table II. For IS ¼ 10, two
choices of a charge-independent NN spin-singlet scattering
length, [A] and [B], were made for comparison [31]. For
ΛN scattering lengths, we used best-fit values derived from
the low-energy Λp spin-averaged scattering cross sections
measured by Alexander et al. [32], assuming charge
symmetry, and also values from several listed YN inter-
action models. These choices suggest a 1S0 ΛN interaction
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stronger than in 3S1, spanning a broad range of possible ΛN
spin dependence. Also listed are values of the spin-
averaged ΛN scattering length ā ¼ ð3at þ asÞ=4, with
approximately �16% spread about the best-fit value
−1.65 fm from Ref. [32], reflecting the model dependence
of fitting all low-energy YN scattering and reaction cross
section data [33].
The LO three-body interaction consists of a single NNN

term associated with the IS ¼ 1
2
1
2
channel and three ΛNN

terms associated with the IS ¼ 0 1
2
; 1 1

2
; 0 3

2
s-wave con-

figurations. The explicit form of the three-body NNN
potential is given by

VNNN¼Dð1=2Þð1=2Þ
λ

X
i<j<k

Qð1=2Þð1=2ÞðijkÞ
�X

cyc

δλðrikÞδλðrjkÞ
�
;

ð4Þ

where the first sum runs over all NNN triplets. The three-
body ΛNN potential is given by

VΛNN ¼
X
IS

DIS
λ

X
i<j

QISðijΛÞδλðriΛÞδλðrjΛÞ; ð5Þ

where the second sum runs over all NN pairs. In Eqs. (4)
and (5),QIS are projection operators on baryon triplets with
isospin I and spin S, and DIS

λ are LECs.
There are four three-body LECs, a pure NNN LEC

Dð1=2Þð1=2Þ
λ fitted to Bð3HÞ and three ΛNN LECs associated

with the three possible s-wave ΛNN systems. Since only
3
ΛHðI ¼ 0; JP ¼ 1

2
þÞ is known to be bound, we have

fitted these LECs instead to the three BΛ values available
(disregarding charge symmetry breaking) for A ≤ 4:
3
ΛHðI ¼ 0; JP ¼ 1

2
þÞ for D0ð1=2Þ

λ , 4
ΛHgsðI ¼ 1

2
; JP ¼ 0þÞ

subsequently for D1ð1=2Þ
λ , and finally 4

ΛHexcðI¼ 1
2
;JP¼1þÞ

for D0ð3=2Þ
λ . Altogether, seven LECs at LO are constrained

by few-body nuclear and hypernuclear data, to be sub-
sequently used in calculations of 4He and 5

ΛHe.
Stochastic variational method.—To solve the A-body

Schrödinger equation, the wave function Ψ is expanded on
a correlated Gaussian basis. Introducing a vector x ¼
ðx1; x2;…; xA−1Þ of Jacobi vectors xj, j ¼ 1; 2;…; A − 1,
we may write Ψ as

Ψ ¼
X
k

ckÂ
�
χkSMξ

k
IIz

exp

�
−
1

2
xTAkx

��
; ð6Þ

where the operator Â antisymmetrizes over nucleons. In
Eq. (6), the basis states are defined by the real, symmetric,
and positive-definite ðA − 1Þ × ðA − 1Þ matrix Ak, together
with the spin and isospin functions χS and ξI . Once these
are chosen, the linear variational parameters ck are obtained
through diagonalization of the Hamiltonian matrix. The
matrix Ak introduces AðA − 1Þ=2 nonlinear variational
parameters which are chosen stochastically, hence the
name SVM. For a comprehensive review, see Ref. [37].
For the specific calculation of the three-body interaction
matrix elements, see Ref. [30].
Results and discussion.—The =πEFT approach with two-

body and three-body regulated contact terms defined by
Eqs. (3)–(5) was applied in SVM few-body calculations as
outlined above to the s-shell nuclei and hypernuclei using
the ΛN scattering-length combinations listed in Table II.
The calculated 5

ΛHe binding energy Bð5ΛHeÞ along with
Bð4HeÞ are found to depend only moderately on λ, for
λ≳ 2 fm−1, exhibiting renormalization scale invariance in
the limit λ → ∞. Using asðNNÞ ¼ −18.63 fm, we obtain
in this limit Bð4HeÞ → 29.2� 0.5 MeV, which compares
well with Bexpð4HeÞ ¼ 28.3 MeV, given that our =πEFT is
truncated at LO and considering that the suppressed
Coulomb force is expected to reduce Bð4HeÞ further by
roughly 1 MeV. The binding energies Bð4HeÞ calculated
for the other choice, asðNNÞ ¼ −23.72 fm, differ by less
than 0.4 MeV and agree with those calculated recently in
Ref. [22].
With Bð4HeÞ and Bð5ΛHeÞ computed, we show in Fig. 1

the resulting Λ separation energy values BΛð5ΛHeÞ as a
function of the cutoff λ for the ΛN scattering-length
versions Alexander[B] and χNLO listed in Table II. The
results shown for Alexander[B] agree to a level of 1% with
those (not shown) for Alexander[A]; both versions differ
only in their 1S0 NN input. The dependence of the
calculated BΛð5ΛHeÞ values on λ is similar in all versions,
switching from about 2–3 MeVoverbinding at λ ¼ 1 fm−1

to less than 1MeVunderbinding between λ ¼ 2 and 3 fm−1

and smoothly varying beyond, approaching a finite limit at
λ → ∞. Renormalization scale invariance implies that
BΛð5ΛHeÞ should be considered in this limit. However, it
may be argued that, when the cutoff value λ matches the
EFT breakup scale, higher-order terms such as effective-
range corrections are absorbed into the LECs. A reasonable
choice of finite cutoff values in the present case is between
λ ≈ 1.5 fm−1, which marks the =πEFT breakup scale of 2mπ ,
and 4 fm−1, beginning at which the detailed dynamics
of vector-meson exchanges may require attention. In the
following we compare the finite versus infinite options
for λ.

TABLE II. Input scattering lengths (in femtometers) used to fit
=πEFT two-body LECs; see the text.

YN model References asðNNÞ asðΛNÞ atðΛNÞ āΛN

Alexander[A] [32] −23.72 −1.8 −1.6 −1.65
Alexander[B] [32] −18.63 −1.8 −1.6 −1.65
NSC97f [34] −18.63 −2.60 −1.71 −1.93
χEFTðLOÞ [35] −18.63 −1.91 −1.23 −1.40
χEFTðNLOÞ [36] −18.63 −2.91 −1.54 −1.88
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Calculated values of BΛð5ΛHeÞ are listed in Table III for
λ ¼ 4 fm−1 and as extrapolated to λ → ∞. To extrapolate to
λ → ∞, the calculated BðλÞ values can be fitted by a power
series in the small parameter Q=λ:

BðλÞ
Bð∞Þ ¼

�
1þ α

Q
λ
þ β

�
Q
λ

�
2

þ γ

�
Q
λ

�
3

þ � � �
�
: ð7Þ

The extrapolation uncertainties listed in Table III for the
asymptotic values BΛðλ → ∞Þ were derived by comparing
two- and three-parameter fits of this form. These uncer-
tainties are also shown as gray bands in Fig. 1. The table
demonstrates how ΛN version χLO, of all versions, is close
to reproducing Bexp

Λ ð5ΛHeÞ for λ ¼ 4 fm−1, whereas ver-
sions Alexander[B] and χNLO (see also Fig. 1) do so only
in the limit λ → ∞.
The sign and size of the three-body contributions play a

crucial role in understanding the cutoff λ dependence of the
calculated BΛð5ΛHeÞ. The nuclear NNN term first changes
from weak attraction at λ ¼ 1 fm−1 in 3H and 4He, similar
to that required in phenomenological models [38], to strong
repulsion at λ ¼ 2 fm−1, which reaches maximal values
around λ ¼ 4 fm−1. However, for larger values of λ it
decreases slowly. The ΛNN contribution follows a similar
trend, but it is weaker than the NNN contribution by a
factor of roughly 3 when repulsive. The transition of the
three-body contributions from long-range weak attraction

to relatively strong repulsion for short-range interactions is
correlated with the transition seen in Fig. 1 from strongly
overbinding 5

ΛHe to weakly underbinding it. We note that
for λ≳ 1.5 fm−1 all of the three ΛNN components are
repulsive, as required to avoid a Thomas collapse, imposing
thereby some constraints on the ΛNN LECs.
Finally, using the =πEFT LECs derived here to

evaluate BΛ in symmetric nuclear matter (SNM), we have
found within a simple Fermi gas model that for version
Alexander[B], e.g., BΛðSNMÞ ≤ 27 MeV at nuclear satu-
ration density, ρA ¼ 0.16 fm−3, for any cutoff value λ.
Although this value is only a lower bound on the binding
energy of Λ in SNM, the acceptable value being ≈30 MeV
[1], it is encouraging that our =πEFT does not lead to
excessive binding. This calls for more rigorous evaluations
of BΛðSNMÞ using perhaps advanced Monte Carlo varia-
tional techniques.
Summary and outlook.—The present work was moti-

vated by the 1–3 MeV persistent overbinding of 5
ΛHe in

most of the few-body calculations reported to date, includ-
ing recent LO EFT model calculations [8]. To this end, we
have applied the =πEFT approach at LO to s-shell Λ
hypernuclei within precise few-body SVM calculations,
extending recent =πEFT studies of light nuclei [20–23]. This
required five LECs at LO: two ΛN LECs, related here to
spin-triplet and spin-singlet ΛN scattering lengths in
several ΛN interaction models, and three ΛNN LECs fitted
to the three available BΛ values in the A ¼ 3,4 hypernuclei.
With these five fitted LECs, for each of the momentum
scale parameters λ chosen, the Λ separation energy
BΛð5ΛHeÞ) was evaluated. Our main finding is that, while
5
ΛHe is overbound indeed by up to 3 MeV for relatively
long-range ΛN and ΛNN interactions, say, at λ ∼ 1 fm−1, it
quickly becomes underbound by less than 1 MeV for
λ ∼ 2–3 fm−1. For most of the ΛN scattering-length ver-
sions studied here, Bcalc

Λ ð5ΛHeÞ approaches slowly in the
limit λ → ∞ the value Bexp

Λ ð5ΛHeÞ ¼ 3.12� 0.02 MeV,
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FIG. 1. BΛð5ΛHeÞ (MeV) as a function of the cutoff λ (fm−1) in LO =πEFT calculations with ΛN scattering-length input listed in Table II.
Solid lines mark a two-parameter fit aþ b=λ, starting from λ ¼ 4 fm−1. Gray horizontal bands mark λ → ∞ extrapolation uncertainties.
Dashed horizontal lines mark the value Bexp

Λ ð5ΛHeÞ ¼ 3.12� 0.02 MeV.

TABLE III. BΛð5ΛHeÞ values (MeV) in LO =πEFT calculations
for several ΛN scattering-length versions from Table II. The
uncertainties listed for cutoff λ ¼ 4 fm−1 are due to subtracting
Bð4HeÞ from Bð5ΛHeÞ, whereas those for λ → ∞ are mostly from
extrapolation, with fitting uncertainties ≲10 keV.

λ (fm−1) Alexander[B] NSC97f χLO χNLO

4 2.59(3) 2.32(3) 2.99(3) 2.40(3)
→ ∞ 3.01(10) 2.74(11) 3.96(08) 3.01(06)
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notably for version Alexander[B] derived in a model
independent way directly from experiment.
Having largely resolved the overbinding problem in light

Λ hypernuclei, it would be interesting in future work to
study possible implications of the strong three-body ΛNN
interactions found here to other problems that involve
hyperons in nuclear and neutron-star matter. To be more
specific, we make the following observations: (i) Other
than the s-shell hypernuclei studied in the present work,
p-shell hypernuclei offer a well-studied range of mass
numbers 6 ≤ A ≤ 16 both experimentally and theoretically
[1]. Recent χEFT LO calculations [39] using induced YNN
repulsive contributions suggest that the s-shell overbinding
problem extends to the p shell. In contrast, shell-model
studies [29] reproduce satisfactorilyp-shell ground-stateBΛ
values, essentially by using Bexp

Λ ð5ΛHeÞ for input, except for
the relatively large difference of about 1.8 MeV between
BΛð9ΛLiÞ and BΛð9ΛBeÞ. In fact, it was noted long ago that
strongly repulsive ΛNN terms could settle it [40]. It would
be interesting to apply our derivedΛNN interaction terms in
future shell-model calculations. (ii) The =πEFT Hamiltonian
derived here includes already at LO repulsive ΛNN terms
which are qualitatively as strong as those used byLonardoni,
Pederiva, andGandolfi [6] to resolve the hyperon puzzle [2].
It would be interesting then to apply our ΛN þ ΛNN
interaction terms in state-of-the-art neutron-star matter
calculations to see whether or not their suggested resolution
of the hyperon puzzle is sufficiently robust.

We hope to discuss in greater detail some of these issues
in forthcoming studies. The work of L. C. and N. B. was
supported by the Pazy Foundation and by the Israel Science
Foundation Grant No. 1308/16.
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