
 

Canceling the Uð1Þ Anomaly in the S Matrix of N = 4 Supergravity

Zvi Bern,1 Julio Parra-Martinez,1 and Radu Roiban2
1Mani L. Bhaumik Institute for Theoretical Physics, UCLA Department of Physics and Astronomy,

Los Angeles, California 90095, USA
2Institute for Gravitation and the Cosmos, Pennsylvania State University,

University Park, Pennsylvania 16802, USA

(Received 7 January 2018; revised manuscript received 6 May 2018; published 7 September 2018)

N ¼ 4 supergravity is understood to contain a Uð1Þ anomaly which manifests itself via the
nonvanishing of loop-level scattering amplitudes that violate a tree-level charge conservation rule. In
this Letter we provide detailed evidence that at one loop such anomalous amplitudes can be set to zero by
the addition of a finite local counterterm. We show that the same counterterm also cancels evanescent
contributions that play an important role in the analysis of ultraviolet divergences in dimensionally
regularized gravity. These cancellations call for a reanalysis of the four-loop ultraviolet divergences
previously found in this theory without the addition of such counterterms.
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Introduction.—Whenever a classical symmetry of a
quantum field theory is broken by quantum corrections
it is said to exhibit an anomaly. This may be either an off-
shell symmetry (i.e., of the Lagrangian) or an on-shell
symmetry (i.e., of the equations of motion or the S matrix).
Anomalies can have important physical consequences. For
example, they may render field theories nonrenormalizable
and nonunitary or they may yield nonzero loop-level
S-matrix elements whose tree-level counterparts vanish
identically due to the classical symmetry. In general,
quantum theories are ambiguous up to the addition of
local counterterms and sometimes these can be chosen
to remove an anomaly, perhaps at the cost of breaking
another symmetry.
In the context of extended four-dimensional supergravity

theories an interesting example of a symmetry susceptible
to anomalies is given by their duality symmetries [1–3].
These symmetries involve electric or magnetic duality
transformations of Abelian vector fields which leave
invariant the equations of motion and, as such, are
symmetries of the on-shell type. In addition, they act
nonlinearly on scalars parametrizing a G=H sigma model.
The presence of anomalies in such sigma models when
coupled to fermions was first addressed in Ref. [4] and
revisited in the setting of extended supergravities in
Ref. [5]. While the duality groups of N > 4 supergravities
are expected to be preserved at the quantum level, it is

argued in Ref. [6] that the classical SUð1; 1Þ duality group
of N ¼ 4 supergravity is anomalous. This anomaly can be
pushed into a Uð1Þ subgroup that “sources” certain classes
of amplitudes that vanish at tree level [7].
The duality symmetries have received renewed interest

due to their implications on the ultraviolet properties of
these theories [7–11]. The precise connection between the
anomalies in these symmetries and ultraviolet divergences
remains to be fully unraveled [10–12], but there are hints
that in N ¼ 4 supergravity the two are tied [7,13,14]. For
instance, the amplitudes sourced by the anomaly, when
inserted into unitarity cuts at higher loops, lead to potential
ultraviolet divergent contributions [7], which cancel at three
loops [12], but not at four loops [13]. Another connection is
the recent observation that the anomalous amplitudes are
intertwined with evanescent contributions [15], similar to
those which played an important role in the interpretation
of the two-loop ultraviolet divergence of pure Einstein
gravity in dimensional regularization [16,17]. Evanescent
operators—such as the Gauss-Bonnet R2 operator—are
those whose tree-level matrix elements vanish identically in
four but not general dimensions. Because of this property,
they can contribute to divergences in dimensional regu-
larization while otherwise having no physical conse-
quences in the amplitudes, since their effects can be
removed by the addition of local counterterms [18].
Similar curvature-squared evanescent contributions also
appear at one loop in N ¼ 4 supergravity [15], although
with an ultraviolet-finite coefficient. From the perspective
of the double-copy construction of N ¼ 4 supergravity
[19,20], in terms of N ¼ 4 super-Yang-Mills and pure
Yang-Mills theory, both these and the anomalous contri-
butions originate in the same rational pieces of the
corresponding Yang-Mills amplitudes.
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Given the relation between the anomalous terms and the
evanescent contributions, and the understanding that the
effects of the latter can be absorbed into finite local
counterterms, we are immediately led to the following
questions: Can we absorb the effects of the anomaly in the
one-loop scattering amplitudes into a local counterterm?
More generally, can the anomaly be canceled in such a
way? Motivated by these questions we explicitly computed
a variety of anomalous amplitudes in N ¼ 4 supergravity,
including infinite classes, and show that they can indeed be
set to zero by the addition of a finite local counterterm
given by the supersymmetrization of a curvature-squared
operator multiplied by scalars. The restoration of the
anomalous Uð1Þ symmetry via the addition of a local
counterterm has already been discussed in Ref. [10] in the
context of the ungauge-fixed effective action. Here we
address a related, but somewhat different, issue of finding a
specific counterterm that removes anomalous scattering
amplitudes.
Review.—The physical complex scalar of N ¼ 4 super-

gravity parametrizes the coset SUð1; 1Þ=Uð1Þ; the choice
of parametrization determines the anomalous Uð1Þ. In a
classically equivalent formulation with a global SUð1; 1Þ
symmetry and an auxiliary Uð1Þ gauge symmetry [1] it is
the latter symmetry that is anomalous. The former frame-
work is recovered upon gauge fixing [5,21]. In the so-called
SUð4Þ gauge fixing the SUð1; 1Þ transformations are
(a) shifting the physical scalar τ, (b) rescaling τ while
rescaling oppositely the vector fields, and (c) nonlinearly
transforming τ while chirally rotating the fermions and
dualizing the vector fields. It is the third generator that is
anomalous.
On shell, the spectrum ofN ¼ 4 supergravity consists of

two different supermultiplets which can be represented
using an on-shell superspace [22] as

Φþ ¼ hþþ þ ηAψþ
A þ 1

2!
ηAηBAþ

AB

þ 1

3!
ηAηBηCεABCDχ

þD þ 1

4!
ηAηBηCηDεABCDt̄;

Φ− ¼ tþ ηAχ−A þ 1

2!
ηAηBA−

AB þ 1

3!
ηAηBηCεABCDψ

−D

þ 1

4!
ηAηBηCηDεABCDh−−: ð1Þ

The indices A, B, C,D are SUð4Þ R-symmetry indices. The
Φþ multiplet contains the positive-helicity graviton hþþ,
the four positive-helicity gravitinos ψþ

A , and so forth down
to the complex scalar t̄. The second supermultiplet is the
CPT conjugate to first one and contains the negative-
helicity graviton h−− and the conjugate scalar t. The
relation between t and τ is

τ ¼ iþ itþOðt2Þ: ð2Þ

Superamplitudes in this theory are classified according to a
maximally-helicity-violating (MHV) degree, k ¼ 0;…;
n − 4 and the numbers nþ and n− of particles in the Φþ
and Φ− multiplets [7]. We shall denote the n-point
NkMHVðnþ;n−Þ amplitudes as

Mðnþ;n−Þ
n;k ≡Mn;kðΦþ

1 ;…;Φþ
nþ ;Φ

−
nþþ1;…;Φ−

n Þ; ð3Þ

where n ¼ nþ þ n−. Only the NkMHVðn−k−2;kþ2Þ tree-
level scattering superamplitudes of this theory are non-
vanishing. This is a consequence of the Uð1Þ symmetry,
which assigns charges ð0;�1=2;�1;�3=2;−2; 2Þ to the
states ðh��;ψ�; A�; χ�; t; t̄Þ in Eq. (1). The Uð1Þ charges
of spinors and vectors identify it as the on-shell form
of the third (anomalous) generator. The main consequence
of the anomaly in the S matrix is that the selection rule does
not hold at loop level and all the amplitudes become
nonvanishing [7].
From the double-copy perspective, the two multiplets in

Eq. (1) correspond to the tensor products of an N ¼ 4
super-Yang-Mills multiplet and a positive or negative-
helicity gluon state of a pure Yang-Mills theory. In this
way, the MHV degree k corresponds to the one of the
supersymmetric side of the double copy and the nþ and n−
labels refer to the two helicities of the gluon on the pure
Yang-Mills side. The Uð1Þ charge of a given state is given
by the difference of the helicities on the two sides of the
double copy: qUð1Þ ¼ hðYMÞ − hðSYMÞ. The anomalous
tree amplitudes with n− ¼ 0, 1, n − 1 or n vanish trivially
because the corresponding pure Yang-Mills tree amplitudes
vanish in the double copy. The other cases are less trivial
and rely on identities between gauge-theory amplitudes,
such as those described in Ref. [23].
Amplitudes.—One-loop scattering amplitudes in N ¼ 4

supergravity have been studied in Refs. [7,20,24–27].
Following Ref. [20], we straightforwardly obtain all the
anomalous four- and five-point gravity amplitudes from the
gauge-theory ones [28] using the double-copy construction
[19,29]. We present them here in the spinor helicity
conventions of Ref. [30]. For an n-point amplitude we
omit the overall factor of ðκ=2Þn=ð4πÞ2, where κ is the
gravitational coupling and the conserved supermomentum
is denoted by QA ¼ P

n
j¼1 λ

α
jη

A
j . At four points the two

independent anomalous superamplitudes are

Mð0;4Þ
4;0 ¼ iδð8ÞðQÞ;

Mð1;3Þ
4;0 ¼ −i

½1 2�h2 3ih2 4i
h1 2ih1 3ih1 4i δ

ð8ÞðQÞ: ð4Þ

Similarly, the five independent anomalous five-point super-
amplitudes are given by
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Mð0;5Þ
5;0 ¼ i2δð8ÞðQÞ;

Mð1;4Þ
5;0 ¼ −i

X3
r¼2

½1 r�hr 4ihr 5i
h1 rih1 4ih1 5i δ

ð8ÞðQÞ;

Mð2;3Þ
5;0 ¼ −iεð1; 2; 3; 4Þ h3 4i

2h4 5i2h5 3i2Q
i<jhi ji

δð8ÞðQÞ;

Mð4;1Þ
5;0 ¼ −i

s12s34δð8ÞðQÞ
h1 4ih4 3ih3 5ih5 2ih2 1i

�
2½1 4�2½1 3�½2 4�
h2 3i½4 5�½1 5�

−
½1 2�2h2 5i2h5 1i2 þ ½3 4�2h4 5i2h5 3i2

h1 2ih2 3ih3 4ih4 5ih5 1i
�

þ ð2 ↔ 3Þ;

Mð5;0Þ
5;0 ¼ i

X
i<j

ðγ̂ijÞ2
sij

δð8ÞðQÞ; ð5Þ

where sij ¼ ðki þ kjÞ2, εði; j; k; lÞ ¼ 4iεμνσρk
μ
i k

ν
jk

σ
kk

ρ
l and

[31]

γ̂12 ¼
½1 2�2½3 4�½4 5�½3 5�

εð1; 2; 3; 4Þ : ð6Þ

The (1,4), (2,3), and (4,1) amplitudes are new and the rest
match the results in Ref. [7]. The result with nV vector
multiplets running in the loop is the same with an
additional overall multiplicative factor of ðnV þ 2Þ=2.
As one would expect for an anomaly in dimensional
regularization, all of these amplitudes are nonvanishing
because of ϵ=ϵ effects where ϵ ¼ ð4 −DÞ=2. It is also
worth noting that through the lens of the double-copy
construction some of these amplitudes are obtained from
nonsupersymmetric gauge-theory amplitudes which also
have been suggested to be nonzero because of another
type of duality anomaly [32].
In Ref. [7], the n-point amplitude,

Mð0;nÞ
n;0 ¼ iðn − 3Þ!δð8ÞðQÞ; ð7Þ

is obtained via inverse-soft-scalar limits. We have
extended this to the cases with n− ≥ 3 and nþ
arbitrary, which correspond to all infinite classes of
MHV anomalous amplitudes except for those with
n− ¼ 0, 1. All superamplitudes of this kind are nonlocal,
and can be obtained from the local ones in Eq. (7) via
the inverse-soft construction [33] which we implement
using the soft-lifting functions of Ref. [26]. A conven-
ient way of presenting them is as the minors, with rows
and columns M ¼ fm1;…; mrg removed [34],
S½M� ¼ jΦjm1…mr

m1…mr , of Hodges’ Φ matrix [35] with com-
ponents

ϕj
i ¼

½i j�
hi ji for i ≠ j; ϕi

i ¼ −
X
j≠i

½i j�hj xihj yi
hi jihi xihi yi ; ð8Þ

where x, y are arbitrary reference spinors. We find that
the n− > 3 anomalous amplitudes are simply given in
terms of the soft-lifting functions,

Mðnþ;n−Þ
n;0 ¼ iðn− − 3Þ!S½M�δð8ÞðQÞ; ð9Þ

where M is the set of Φ− external states. The soft-lifting
function was used in Ref. [26] to obtain the rational
terms needed to complete the construction of the n-point
nonanomalous (n− ¼ 2) amplitudes. We suspect that a
similar inverse-soft formula exists for the n− < 2 ampli-
tudes, but finding it would require a detailed under-
standing of the kinematic deformations that implement
the inverse-soft procedure, which is trivial for the n− ≥ 3
cases but not for the rest.
Equation (9) reproduces the corresponding results in

Eqs. (4) and (5). In addition, as explained in Ref. [26], the
soft-lifting functions encode all the correct soft and
collinear limits involving the legs added in the inverse-
soft procedure. Indeed, one can straightforwardly check
that Eq. (9) has the correct soft limits

Mðnþ;n−Þ
n;0 ⟶

ki→0
Spi

Mðnþ−1;n−Þ
n−1;0 ; for Φþ

i ;

Mðnþ;n−Þ
n;0 ⟶

ki→0 ðn− − 3ÞMðnþ;n−−1Þ
n−1;0 ; for Φ−

i ; ð10Þ
where Spi

¼ ϕi
i is the usual graviton leading soft factor.

Similarly, taking the supersymmetric collinear limits

ðλa; λ̃a; ηaÞ →
ffiffiffi
z

p ðλK; λ̃K; ηKÞ;
ðλb; λ̃b; ηbÞ →

ffiffiffiffiffiffiffiffiffiffi
1 − z

p ðλK; λ̃K; ηKÞ; ð11Þ
we find that the amplitudes in Eq. (9) have a universal
phase singularity, i.e.,

Mn;0ð…;Φha
a ;Φhb

b ;…Þ ⟶ajjb
X
hK¼�

Sphahb−hK Mn−1;0ð…;ΦhK
P ;…Þ;

ð12Þ
where the hi denote the supermultiplet and the relevant
splitting functions are

Spþþ
− ¼−

1

zð1− zÞ
½ab�
habi ; Sp−þþ ¼−

z
ð1− zÞ

½ab�
habi : ð13Þ

As usual for gravity collinear limits with real momenta, we
are only concerned with the terms that contain phase
singularities. (See Ref. [36] for further details.) These
checks fall short of a proof of Eq. (9), but as usual they
give us confidence that this formula is correct.
Cancellation of anomalous amplitudes.—With these

results in hand we can address the question of whether
the anomalous amplitudes can be canceled by a local
counterterm. Reference [7] noted that the local amplitudes
(7) can be interpreted as arising from the following local
Uð1Þ-breaking terms in the one-loop effective action,
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Γlocal
Uð1Þ ¼

1

2ð4πÞ2
Z

d4xðð1 − logð1 − t̄ÞÞðRþÞ2

þ ð1 − logð1 − tÞÞðR−Þ2Þ þ SUSY; ð14Þ

where Rþ and R− are the self-dual and anti-self-dual parts
of the Riemann tensor, R�

μνρσ ¼ �ði=2ÞεμναβR�
αβσρ with

ε0123 ¼ þ1. Again, in the presence of nV vector multiplets
there is an extra factor of ðnV þ 2Þ=2 in the coefficient.
As usual, definitions of quantum theories are ambiguous

up to the addition of local counterterms. Ambiguities can
be fixed by demanding that classical symmetries and
associated constraints on the scattering amplitudes are
preserved. In this spirit, we choose to define N ¼ 4

supergravity to include the finite local counterterm Sct ¼
−Γlocal

Uð1Þ which subtracts away the local part of the anoma-

lous effective action (14). While this subtraction effectively
changes the gauge of the auxiliaryUð1Þ symmetry and thus
departs [7] from the original formulation of the off-shell
theory [2], it also sets to zero all one-loop local anomalous
amplitudes in Eq. (7), so it is the one we desire.
Deformations of the classical action by a local operator

also contribute to nonlocal amplitudes. Since the counter-
term sets to zero the anomalous local amplitudes, it is
interesting to consider its effect on the nonlocal ones as
well. The presentation of the n− > 3 amplitudes in Eq. (9)
makes it clear that the same counterterm in Eq. (14) also
cancels this entire class of amplitudes, because it cancels

the seed Mð0;nÞ
n;0 of the inverse soft construction. That is, for

this class of superamplitudes, at one loop we have

Mðnþ;n−Þ;full
n;0 ¼ Mðnþ;n−Þ

n;0 þMðnþ;n−Þ;Sct
n;0 ¼ 0; ð15Þ

where Mðnþ;n−Þ;Sct
n;0 are tree superamplitudes with a single

vertex from the counterterm action in Eq. (14).
To independently confirm this cancellation, and to also

check the fate of the two amplitudes in Eq. (5) which are
not given by Eq. (9), we compute the contribution of the
counterterm action to one-loop amplitudes using the
double-copy construction applied to higher-dimension
operators [37]. References [37,38] show that, when applied
to two copies of pure Yang-Mills theory with a
TrðFμ

νFν
ρFρ

μÞ=3 deformation, the double-copy approach
yields the amplitudes in gravity deformed by ϕmR2

operators, where ϕ is a scalar field. Using instead N ¼
4 super-Yang-Mills theory as the first factor leads therefore
to the tree-level amplitudes of N ¼ 4 supergravity
deformed by an operator O which is a supersymmetric
completion of the ϕmR2 operators. Using the F3-deformed
Yang-Mills amplitudes found in Refs. [37,39], the Kawai-
Lewellen-Tye (KLT) [40] double-copy formulas give

Mð0;nÞ;O
n;0 ¼ iðn − 2Þ!δð8ÞðQÞ; ð16Þ

for n ¼ 3, 4, 5. Thus, at least for this number of external
lines, the double copy yields the matrix elements of the
supersymmetrization of the operator

O ¼ 1

2ð4πÞ2
�
ðRþÞ2

X
n

t̄n þ ðR−Þ2
X
n

tn
�
; ð17Þ

which only differs by a numerical factor from the expected
counterterm action (14): the number of scalars. The
normalization of these matrix elements can be changed
to obtain those of Eq. (14), thus confirming through an
independent calculation that all three-, four-, and five-point
anomalous one-loop amplitudes are canceled after
deforming the classical action by the counterterm (14).
Once lower-point amplitudes are canceled by a counter-
term, consistency with soft and collinear graviton limits
suggests that the cancellation continues to all multiplicities,
even for n− ¼ 0, 1. These results strongly indicate that the
counterterm action cancels both the local and the nonlocal
one-loop anomalous amplitudes and thus restores the Uð1Þ
symmetry. We expect that the addition of this counterterm
moves the anomaly into other generators of SUð1; 1Þ,
which do not appear to impose any selection rule on the
scattering amplitudes.
In addition, Ref. [15] explains that the nonanomalous

four-point superamplitude has the form

Mð2;2Þ
4;0 ¼ Mtree

R2 þ � � � ; ð18Þ

where Mtree
R2 are evanescent matrix elements of the Gauss-

Bonnet operator and its supersymmetric completion [41].
The same paper points out that the anomalous and
evanescent contributions are intertwined by the double
copy. The local term in Eq. (14) reflects this observation.
Indeed, the t-independent term in Eq. (14) is the Gauss-
Bonnet combination in the effective action,

Γlocal
Uð1Þ ¼

1

2ð4πÞ2
Z

d4xR�R� þ � � � : ð19Þ

Counterterm (14) removes both the anomalous amplitudes
and the evanescent contribution found at one loop
in Ref. [15].
Reference [42] noted that the nonanomalous amplitudes

can give rise to anomalous ones in the soft-scalar limit. This
fact was interpreted as a consequence of the duality
anomaly. Following the analysis above, we checked that
the only effect of the counterterm on the four- and five-
point amplitudes is restricted to the cancellation of evan-
escent pieces. In particular, one can check that the soft
limits are unmodified. In general, higher-derivative correc-
tions explicitly break the noncompact duality symmetry
resulting in nonvanishing soft limits [9]. In light of this, the
connection between soft scalar limits and the anomaly in
the presence of counterterms requires further analysis.
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Conclusions.—In summary, in this Letter we showed that
both the local and nonlocal anomalous MHV one-loop
amplitudes of N ¼ 4 supergravity can be systematically
canceled by adding a local counterterm to the classical
action. These cancellations are nontrivial and strongly
suggest that all anomalous amplitudes in the theory can
be removed in the same way. Nevertheless, a number of
issues remain. First, an off-shell supersymmetric comple-
tion of our counterterm might help shed light on the
cancellations beyond scattering amplitudes. A related
supersymmetric counterterm has been described in
Ref. [43]; it would be worthwhile to directly compare
the anomalous matrix elements ofN ¼ 4 supergravity with
ones generated by this term, as well as the one described in
Ref. [10]. It would also be interesting to understand the
relation, if any, to other instances of cancellations of similar
anomalies in other four-dimensional field and string-theory
models [44–47]. Perhaps more importantly, we would like
to investigate the anomalous amplitudes at higher loops.
Reference [13] found that, at four loops, both anomalous
and nonanomalous amplitudes inN ¼ 4 supergravity carry
a leading ultraviolet divergence. This is surprising because
the integrands of the anomalous amplitudes must vanish in
strictly four dimensions and therefore carry an extra factor
the dimensional regularization parameter ϵ compared to the
nonanomalous ones. One would then expect the divergen-
ces of the anomalous amplitudes to be suppressed, unless
the actual source of the divergence is the anomaly. As
mentioned above, the anomalous lower-loop amplitudes are
expected to induce divergences at higher loops, even in the
nonanomalous amplitudes [7]. Thus, the local counterterms
removing the former should contribute nontrivially to the
divergences of the latter. The complete four-loop diver-
gence should thus be reanalyzed. To determine the counter-
term effects on the four-loop divergence it is necessary to
evaluate anomalous amplitudes at higher loops and under-
stand whether further finite counterterms are necessary for
their removal. In any case, there are clearly new lessons to
be learned by investigating the higher-loop amplitudes of
this theory.
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