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In 1974, Harris proposed his celebrated criterion: Continuous phase transitions in d-dimensional systems
are stable against quenched spatial randomness whenever dν > 2, where ν is the clean critical exponent of
the correlation length. Forty years later, motivated by violations of the Harris criterion for certain lattices
such as Voronoi-Delaunay triangulations of random point clouds, Barghathi and Vojta put forth a modified
criterion for topologically disordered systems: aν > 1, where a is the disorder decay exponent, which
measures how fast coordination number fluctuations decay with increasing length scale. Here we present a
topologically disordered lattice with coordination number fluctuations that decay as slowly as those of
conventional uncorrelated randomness, but for which the clean universal behavior is preserved, hence
violating even the modified criterion.
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Spatial disorder arising from impurities, defects, and other
inhomogeneities is intrinsic to most real systems. Moreover,
disorder, in the form of random lattices, provides a useful
theoretical tool for the discretization of nontrivial spaces in
fields ranging from classical equilibrium statistical systems
to quantum gravity [[1], and references therein]. It is there-
fore important from both theoretical and experimental stand-
points to understand the influence of quenched randomness.
In particular, with respect to the critical behavior of physical
systems, the fundamental question iswhether disorder affects
the nature of phase transitions, and a number of arguments
and criteria have been offered.
The original relevance criterion, proposed by Harris [2,3],

states that a second-order transition in a d-dimensional
system, with clean correlation length exponent ν [4], is
stable against quenched spatial disorder if dν > 2. A relevant
example is the 2D contact process (CP), for which that
inequality is violated [[5], and references therein]. When
placed on a regular lattice with random dilutions, the CP
phase transition does not show clean universal behavior,
but is instead controlled by an infinite-randomness critical
point, where the usual algebraic scaling relations are replaced
by a logarithmic time evolution [5,6]. However, a different
behavior emerges when the CP is placed on another kind of
spatially disordered lattice, namely a Voronoi-Delaunay
(VD) construction, where any two of the (randomly distrib-
uted) sites are connected whenever their Voronoi (or prox-
imity) cells share a common edge. Here, clean universal
properties have been verified [7], in clear contradiction with
Harris’ criterion. In order to address these puzzling results,
Barghathi andVojta [8] refined the original Harris criterion in
terms of spatial anticorrelations in the coordination number
fluctuations, offering an explanation for the preserved
universality of VD lattices. This modified condition, which
we call Harris-Barghathi-Vojta (HBV) criterion, posits that

quenched topological disorder is irrelevantwith respect to the
stability of the phase transition in systems that satisfy

aν > 1; ð1Þ
where a is the dimension-dependent disorder decay expo-
nent, defined by the relation

σQ ∼ L−a
b : ð2Þ

In Eq. (2), the lattice under consideration is subdivided into
spatial blocks of lengthLb and σQ is the standard deviation of
the block-averaged coordination numbers from the asymp-
toticmeanvalue.Note that for uncorrelated disordera ¼ d=2
and Eq. (1) corresponds to the original Harris criterion. In
particular, in Ref. [8] it is shown that in 2D, a ¼ 1 for
uncorrelated disorder (e.g., in regular lattices with random
dilutions), whereas a ¼ 3=2 for VD lattices. Hence, the
modified criterionEq. (1) successfully explains earlier results
of the Ising model and the contact process on those
geometries (see Table I for a compilation of predictions
and observations in 2D).

TABLE I. Predictions of the HBV criterion for the 2D Ising and
directed percolation (DP) universality classes as well as obser-
vations from numerical studies with respect to whether the
clean universal behavior is present (✓) or not (✗) for the
respective model.

d Class Lattice aν Prediction Observation

2 Ising VD 3=2 ✓ ✓ [9–11]
2 Ising Diluted 1 � � � marginal [12–27]
2 DP VD 1.100 ✓ ✓ [7,28]
2 DP Diluted 0.733 ✗ ✗ [5,6,29]
2 DP VDþ 0.733 ✗ ✓ [this work]
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In this Letter, we define the VDþ lattice: a Voronoi-
Delaunay triangulation of a Poissonian point cloud, fur-
nished with additional local bonds, see Fig. 1. This lattice is
constructed from a VD triangulation of N sites, to which
kN bonds between next-nearest neighbors are randomly
added (we select k ¼ 1), resulting in a lattice with a total
coordination number of exactly ð6þ 2kÞN. This latter
constraint is relevant for the applicability of the HBV
criterion [8,30].
We find the disorder decay exponent for the VDþ to be

a ¼ 1 (see Fig. 2). This follows from the additional bonds
being a source of uncorrelated disorder, which decays more
slowly than the coordination number fluctuations of the
original VD lattice. This interpretation is corroborated by
the measurement of σQðLbÞ for the additional bonds alone:
as can be seen in Fig. 2, both curves are almost identical,
demonstrating the dominance of the additional bonds. The
HBV criterion therefore predicts that our construction
should not display clean universal behavior for any
universality class with ν < 1, such as directed percolation

(DP). In order to verify this prediction, we perform
extensive numerical simulations of the contact process
on the 2D VDþ lattice and find strong indication of clean
universal behavior, contradicting the HBV prediction.
The contact process is a simple nonequilibrium lattice

model which exhibits a continuous phase transition belong-
ing to the directed percolation universality class. Each site is
in either of two states, active (infected) or inactive (healthy).
During the time evolution of the system, active sites can
infect random neighbors with probability p or recover (i.e.,
become inactive) with complementary probability 1 − p.
After each time step (infection attempt or self-recovery)
the simulation time is incremented by Δt ¼ 1=Na, where
Na is the number of active particles in the system prior to the
update. As soon as the system enters the so-called absorbing
statewhere thewhole lattice is empty, thedynamic terminates.
In order to determine the critical pointpc that separates the

absorbing (subcritical) and active (supercritical) phase, we
conduct simulations starting froma single active seed [31,32]
on an otherwise empty VDþ lattice of size L ¼ 6000,
allowing for times up to T ¼ 105. Unwanted finite size
effects are avoided by ensuring that cluster diameters remain
smaller than L. We use 2000 independent disorder realiza-
tions with 2000 runs each. For pc ¼ 0.589775ð3Þ we find
that the average cluster size follows a power-law behavior,
hNaðtÞi ∼ tθ, as expected in the case of clean universality.
The uncertainty of the critical point is estimated from
simulations at probabilitiesp ¼ pc � δp, δp ≪ 1, such that
the corresponding time evolution barely, but noticeably,
bends away from a straight line in a double-logarithmic
plot. A linear fit in the region 103 < t < 105 yields an
exponent θ ¼ 0.230ð9Þ, where the error stems from the
uncertainty of the critical point, a result compatible with the
reference value θ ¼ 0.2293ð4Þ of the clean DP class [33].
Once the critical point is known, we can obtain the

quasistationary (QS) density ρ, as well as the average
lifetime of the quasistationary state, τ, directly at pc.
For details on the QS method, we refer the reader to
Refs. [34,35]. As emphasized in Ref. [36], very long

(a) (b)

FIG. 1. (a) Sample of a usual VD triangulation of a Poissonian
point cloud. (b) The lattice we introduce in this Letter, VDþ,
constructed from (a) by adding random local bonds.

FIG. 2. Coordination number fluctuations on different length
scales for VDþ, ordinary VD, the set of additional bonds that
distinguishes both (þ), and a site-diluted square lattice (SD). The
curves are found to decay as σQ ∼ L−3=2

b for the Voronoi-
Delaunay (VD) triangulation, and as σQ ∼ L−1

b for the other
lattices. For the analysis, 100 independent realizations of size
L ¼ 5000 have been used for each lattice. Note that the data
points for VDþ and (þ) almost coincide.

(a) (b)

FIG. 3. Quasistationary density (a) and lifetime (b) as a function
of the linear lattice size L, ranging from 32 to 1024. The slope of
ln ρ yields β=ν, whereas ln τ yields z. The dots represent averages
over 320 independent disorder realizations. The error bars are
smaller than the symbol sizes.
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simulation times are needed to reliably detect a deviation
from the universal behavior. We therefore use 320 inde-
pendent realizations of the VDþ lattice, ranging from
L ¼ 32 to 1024, and simulate the contact process for a
time of 108. The measurements are taken after a generously
sized relaxation period of 7 × 107. The resulting data,
shown in Fig. 3, reveal that ln ρ and ln τ follow straight
lines, and linear fits yield the exponents

β=ν ¼ 0.800ð5Þ; ð3Þ

z ¼ 1.758ð14Þ; ð4Þ

where the errors reflect both the uncertainty of the critical
point and the fluctuations of the individual data points,
with the latter accounting for roughly one third of the total
uncertainties. Both exponents are compatible with reference
values, β=ν ¼ 0.797ð3Þ and z ¼ 1.7674ð6Þ [33]. In fact, the
power lawdependence displayed by τ is in itself an indication
of clean universal behavior, since an exponential scaling,
ln τ ∼ Lψ , is expected for uncorrelated randomness [36].
In another set of simulations we measured the density of

particles ρðtÞ, starting from a fully occupied lattice. For
finite-size systems at the critical point it is expected to
follow

ρðL; tÞ ¼ t−δρ̃ðt=LzÞ; ð5Þ

where ρ̃ is a universal scaling function. Performing sim-
ulations on lattices from L ¼ 32 to 2048, running for times
up to 106 and using 500 disorder realizations with 5 runs on
each realization, we obtain the data presented in Fig. 4,
which show the finite-size data collapse, as well as the
original measurement of ρðtÞ in the inset. The data collapse
is performed by, using the estimate [Eq. (4)] for z,

determining the value of δ for which the curves in
Fig. 4 superpose each other. This gives us the result

δ ¼ 0.453ð5Þ: ð6Þ
This estimate is again compatible with the clean reference
value δ ¼ 0.4523ð10Þ from Ref. [33].
We can obtain a further exponent, νk ¼ zν, from off-

critical simulations, using the relation

ρðΔ; tÞ ¼ t−δρ̂ðΔt1=νkÞ; ð7Þ
where Δ ¼ p − pc denotes the distance from criticality and
ρ̂ is a scaling function. Using the estimate for δ obtained
above, we produce the curve collapse of Fig. 5 when we set

νk ¼ 1.31ð2Þ; ð8Þ
in accordance with the reference value, νk ¼ 1.292ð4Þ [33].
In summary, all the exponents we obtain for the two-

dimensional VDþ lattice in numerical simulations of the
contact process, turn out to be fully compatible with the
ones for the clean universality class. In particular, the data
collapse plots are flawless within numerical precision. This
provides strong evidence that the phase transition on the
VDþ is in fact controlled by the clean universal behavior of
the DP class, hence indicating that the VDþ violates the
HBV criterion. Clearly, regardless of our extensive numeri-
cal effort, including large lattice sizes and long simulation
times, the possibility of a crossover away from the clean
universal behavior for extremely long times can not be
ruled out, though very large crossover times are unlikely for
VD, as reasoned in Ref. [8]. Moreover, it could be argued
that the “canonical” constraint (i.e., fixed number of addi-
tional bonds) imposed in the VDþ construction leads to
spurious results. In particular, Ref. [37] shows that although

FIG. 4. Finite size data collapse of simulations starting from a
fully occupied VDþ lattice at the critical point pc ¼ 0.589775,
using the critical exponent estimates stated in the figure. All
curves are averages over 500 disorder realizations with 5 runs per
realization. L denotes the linear system size. The inset shows the
nonrescaled density as a function of time.

FIG. 5. Data collapse in the off-critical region, starting from a
fully occupied VDþ lattice of size L ¼ 2048 using the critical
exponent estimates given in the figure. All curves are averages
over 250 disorder realizations, with 5 runs per realization.
The symbol Δ denotes the distance from the critical point
pc ¼ 0.589775. The inset shows the nonrescaled density as a
function of time.
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the canonical and its “grand-canonical” counterpart (i.e.,
without global constraints) belong to the same universality
class, the approach to the asymptotic behavior can be much
slower in the former. We therefore also implemented a
grand-canonical construction of the VDþ lattice, VDþ

GC,
where the additional bonds are now drawn independently
with a certain probability for each node, resulting in a total
coordination number which fluctuates around ð6þ 2ÞN.
When we repeat all simulations described above on the
VDþ

GC, we again obtain results fully compatible with the
clean universal behavior of the DP class [38], revealing that
the constraint has no influence on our conclusions.
Furthermore our findings strengthen an assumption two

of us made recently [39]: that fluctuations in the co-
ordination number do not exclusively determine the sta-
bility of the phase transition against quenched disorder.
A further study on this subject, which considers the contact
process on the topologically disordered lattice with con-
stant coordination number (CC) also introduced in
Ref. [39], is currently in preparation. In particular, since
the VDþ lattice is clearly not planar (triangulations are
maximal sets of nonintersecting edges [40], thus added
bonds necessarily cross existing ones), our results answer a
question raised in Ref. [39], as planarity is shown not to be
a necessary condition for stability of the phase transition
against quenched spacial disorder.
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