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Periodically driven systems have displayed a variety of fascinating phenomena without analogies in
static systems, which enrich the classification of quantum phases of matter and stimulate a wide range of
research interests. Here, we employ discrete-time quantum walks to investigate a nontrivial topological
effect unique to a two-dimensional periodically driven system: chiral edge states can exist at the interface of
Floquet insulators whose Chern numbers vanish. Thanks to a resource-saving and flexible fiber-loop
architecture, we realize inhomogeneous two-dimensional quantum walks up to 25 steps, over an effective
51 × 51 lattice with tunable local parameters. Spin-polarized chiral edge states are observed at the
boundary of two distinct quantum walk domains. Our results contribute to establishing a well-controlled
platform for exploring nontrivial topological phases.
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Beyond fundamental research interests, potential appli-
cations to spintronics [1] and topological quantum com-
putation [2] spur extensive investigation into topological
phases of well controlled systems. In the past decade,
topologically protected edge states have also been shown
to exist in periodically driven systems called Floquet
topological insulators [3,4]. According to Floquet band
theory, a periodically driven system can be treated
effectively as being static: its topological phase is
classified by a time-independent effective Hamiltonian
[5]. Interestingly, some novel topological phenomena
without counterparts in static systems, such as anomalous
Floquet-Anderson insulators [6–9] and time crystals
[10–12], illuminate new topological physics in periodi-
cally driven systems where continuous time translational
symmetry is broken.
A discrete-time quantum walk (DTQW) describes coher-

ent propagation of a spin-1=2 particle on a lattice, evolving
under repeated implementation of a unitary step operator
[13–17]. With modified walk protocols, DTQWs can
simulate various topological phases classified by sym-
metries and dimensions [18]. Experimental investigations
of the topological properties of one-dimensional DTQWs
have been demonstrated in physical systems with photons
[19–23] and superconducting circuits [24].

Here, we experimentally investigate topological phenom-
ena of a two-dimensional DTQW (2DQW) in a time-multi-
plexed architecture [14–16,21]. In our 2DQW model, the
Chern number, which indicates chiral edge modes at the
boundary of a quantumHall effect device [25,26], turns out to
vanishover the entire parameter space, although topologically
protected edge states have been predicted to exist at the
boundaries of two different 2DQWdomains [27]. Instead, the
Rudner winding number [6] characterizes the topological
phasesof the2DQW[28,29],whicharenot incorporated in the
periodic tableof topological classes for static systems [30].We
confirm the presence of edge states by observing spin-
momentum locked edge states with topological robustness
at the boundary of a photonic inhomogeneous 2DQW.
Given a single spin-1=2 particle walking on a two-

dimensional (2D) periodic lattice, the basis vector is
jx; y; si, where s is the internal spin state, and x, y are
the coordinates of the walker in the 2D lattice. The unitary
operator of a single step is

U ¼ TyRðθ2ÞTxRðθ1Þ; RðθÞ ¼ e−iσyθ=2; ð1Þ

where RðθÞ is a spin rotation around the y axis, and T
denotes a spin-dependent translation in position space. In
the x direction, the translation operator is
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Tx¼
X

x

½jxþ1ihxj⊗ j↑ih↑jþjx−1ihxj⊗ j↓ih↓j�; ð2Þ

and likewise for Ty.
According to Floquet band theory, the effective quan-

tum-walk Hamiltonian is obtained from the single-step
unitary operator by the equation

Uðθ1; θ2Þ ¼ e−iHðθ1;θ2Þt=ℏ; ð3Þ

where t is the time duration of one unitary operation (here
we set t=ℏ≡ 1). In quasimomentum space, we obtain the
spin-orbit coupling Hamiltonian

Hðθ1; θ2Þ ¼
Z

d2k½EðkÞnðkÞ · σ� ⊗ jkihkj; ð4Þ

where σ ¼ ðσx; σy; σyÞ is the Pauli matrix vector and the
unit vector n ¼ ðnx; ny; nzÞ determines the spin eigenstate

at each quasienergy EðkÞ. Because of the periodic imple-
mentation of U, quasienergy acts as an accumulated phase
for the eigenstate after each step and has a periodicity
of 2π [27].
For arbitrary parameters, the quasienergy spectrum of

Hðθ1; θ2Þ has a two-band structure and the Chern number is
always 0, except the gapless phases for which the quasie-
nergy gaps close at both E ¼ 0 and E ¼ �π [Fig. 1(a) and
[31] ]. Because of the periodicity of quasienergy, E ¼ π
coincides with E ¼ −π. Rudner winding numbers are also
labeled in the phase diagram to characterize different
topological phases by considering the time dependence
of U during one driving period [28,29].
In Figs. 1(c)–1(d), band structures of inhomogeneous

2DQWs with the geometry defined in Fig. 1(b) are shown.
If Hamiltonians of x < 0 and x ≥ 0 have distinct winding
numbers, edge states are present with quasienergies lying
in the band gaps of bulk states and close the gaps around
E ¼ 0 and E ¼ �π. The implied nontrivial topological

(a) (c)

(b) (d)

FIG. 1. Phase diagram, inhomogeneous 2DQW, and quasienergy
bands. (a) Phase diagram of the 2DQW. Topological phases are
distinguished by Rudner winding numbers W ¼ �1 (bold),
whereas the Chern number is always 0 (normal typeface). Black
bold lines indicate the gapless phases, separating the parameter
space into distinct phases (magenta and blue). ①–③ represent
different parameter choices for 2DQWs. (b) Schematic figure of
spatial inhomogeneous 2DQW with effective Hamiltonians
Hðθ1−;θ2Þ for x < 0 and Hðθ1þ; θ2Þ for x ≥ 0, where θ1− ≠ θ1þ
and θ2 ¼ π=2. A finite geometry and periodic boundary conditions
in the x direction are assumed (dashed black line). In the y direction,
we employ a geometry of infinite length with translational invari-
ance. When the left (x < 0) and right (x ≥ 0) Hamiltonians are
described by different winding numbers, chiral edge modes appear,
as marked by the green (yellow) arrowed lines at the middle (outer)
edge. (c)–(d), Quasienergy bands of the inhomogeneous 2DQWs
with parameter choices shown above. Chiral edge states are colored
green (yellow) with positive (negative) dispersion corresponding to
upward (downward) edge modes in (b). In our experiment, we
simulate inhomogeneous 2DQWs with open boundary conditions,
so only edge states localized at themiddle edge (x ¼ 0) are depicted
in the band structures.

(a)

(b)

FIG. 2. Experimental implementation of 2DQWs with time-bin
encoding. (a) Experimental setup. The initial pulse is generated
from an 895 nm pulsed laser with a pulse duration of 15 ps and a
repetition frequency of 30 kHz, and is coupled into the circuit by
an acousto-optic modulator (AOM). The rotation operations
Rðθ1Þ and Rðθ2Þ are, respectively, implemented by a fast-switch-
ing electro-optic modulator (EOM) and a half wave plate (HWP).
The two-PBS (polarizing beam splitter) loops are used to realize
polarization-dependent optical delays, where the V component is
delayed relative to the H component by a 6 m-long single mode
fiber (SMF) and 30 cm free-space path difference, representing
the translation in the x and y directions, respectively. After every
single step, around 3% of photons are reflected by a beam splitter
for detection and the transmitted photons continue to propagate
through the circuit. (b) Reconstruction of 2D probability dis-
tributions. The initial pulse is localized at origin j0; 0i. After one
2DQW step, a single pulse is split into four discrete time bins,
equivalent to a walker coherently dispersed on a 3 × 3 lattice with
the probabilities of the even sites null. Similarly for the second
step and so on.
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structure, “quasienergy winding” [5], provides an intuitive
understanding of the topological origin in this 2DQW
model [31] and some other exotic phenomena unique to
periodically driven systems [6].
Being benefited from the fact that quantum interference

in quantum walks can be simulated by the wave nature
of a coherent light field, we implement inhomogeneous
2DQWs with photons from an attenuated laser pulse
[14–16,33]. The internal spin states (j↑i, j↓i) of a walker
are represented by photon polarizations (jHi, jVi) and the
2D spatial positions are encoded in discrete time bins at two
different time scales [16].
As shown in Fig. 2(a), a single-step 2DQW, as defined in

Eqs. (1) and (2), is realized by a round trip through the
circuit [31]. The efficiency of a round trip is 63% [31]. In
Fig. 2(b), we show the mapping between the time-bin
sequence and the 2D spatial lattice, and a coordinate ðx; yÞ
corresponding to a site on the 2D lattice is used to label
each discrete time bin. Because of temporal separation, the
fast-switching EOM can implement different Rðθ1�Þ on
time bins of x < 0 and x ≥ 0 to realize inhomogeneous
2DQWs of distinct topological phases (W ¼ �1). The

dynamics of a 2DQW can be traced by reconstructing
the 2D probability distributions Pðx; y; nÞ from the photon
statistics of the output time-bin sequence, where n is the
step number. Owing to loss accumulated by 25 round trips,
the final state diminishes to the single-photon level before
being coupled out of the circuit and detected by super-
conducting nanowire single-photon detectors [31]. All
experimental results of Pðx; y;nÞ are averaged over more
than 104 detected incidents.
First, we choose Hamiltonians Hðθ1�; θ2Þ belonging to

different topological phases W ¼ �1 and W ¼∓ 1 cor-
responding to the cases of Figs. 1(c) and 1(d), respec-
tively. As shown in Fig. 3(a) [3(b)], edge states
propagating upward (downward) from the origin are
observed near the boundary at x ¼ 0 with initial polari-
zation jHi (jVi), where the initial polarization is selected
to have a large overlap with the edge modes. In contrast
to the localized edge modes at x ¼ 0, the bulk-mode
component spreads ballistically into the bulk. During
evolution, edge-state wave packets display almost no
expansion, manifesting linear dispersion around E ¼ 0
and E ¼ �π shown in Figs. 1(c) and 1(d). To compare the

(a)

(b)

(c)

(d)

FIG. 3. Observation of spin-polarized chiral edge states in inhomogeneous 2DQWs. (a)–(b) Experimentally detected normalized
probability distribution Pðx; y; nÞ after n steps with photons initialized at the origin (white circle), and parameters and initial polarization
of: (a) θ1− ¼ π=4, θ1þ ¼ 3π=4, jHi; (b), θ1− ¼ 5π=4, θ1þ ¼ 7π=4, jVi. The red line at x ¼ 0 indicates the boundary of inhomogeneous
2DQWs. (c) Evolution of the remained probability PðB; nÞwithin the boundary region as step numbers n increase. To calculate PðB; nÞ,
probabilities in the boundary region B with a width of four lattice units [green unfilled rectangle in (a)] are summed. Quantum walks in
(a) (blue circle) and (b) (orange square), as well as an inhomogeneous 2DQW without a topological edge (red diamond and green
triangle), are shown. The parameters θ1� and initial polarizations s (pseudospin) are annotated in the legend. Theoretical (experimental)
values are depicted as solid lines (dots). (d) Plots of the average polarization in σz basis of photons remaining in edge-state wave packet
after 25 steps as a function of the distance jdjðjd0jÞ of θ1� away from π=2ð3π=2Þ. The values of θ1� are symmetrically assigned around
θ1 ¼ π=2ð3π=2Þ. The parameters we choose to obtain upward edge modes (yellow star), in turn, are θ1− ¼ π=3 and θ1þ ¼ 2π=3,
θ1− ¼ π=4 and θ1þ ¼ 3π=4, θ1− ¼ π=5 and θ1þ ¼ 4π=5, and θ1− ¼ π=6 and θ1þ ¼ 5π=6. In terms of downward edge modes, all pairs
of θ1� are right shifted by π shown as the green polygons in the inset phase diagram. Statistical errors are smaller than the dot sizes.
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measured probability distributions (Pexp) with the theoreti-
cally simulated distributions (Pth), we use fidelity FðnÞ ¼P

x;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pthðx; y; nÞPexpðx; y; nÞ

p
. The fidelity of the spatial

probability distribution of Pðx; y; 25Þ (across 676 sites) in
Fig. 3(a) [3(b)] is 0.960� 0.003 (0.950� 0.002).
In Fig. 3(c), we plot PðB; nÞ, the probability of finding

the walker in the boundary region B [Fig. 3(a)] as a
function of step number n. Half the width of B is set to
2 lattice units, which is larger than 1.3 lattice units, the
typical decay length of edge states with quasienergies deep
in the gap [31]. PðB;nÞ for inhomogeneous 2DQWs in
Figs. 3(a) and 3(b) tend to a constant around 0.35 after 11
steps [Fig. 3(c)].
On the contrary, when Hðθ1−; θ2Þ and Hðθ1þ; θ2Þ are

characterized by parameters from the same diamond of
W ¼ −1, the probability distribution spreads ballistically
[31], which is a known feature of quantum walks [34]. The
probability distributed in the vicinity of the boundary

exhibits an approximately exponential decay for both initial
states j0; 0; Hiand j0; 0; Vi [Fig. 3(c)].As jHiand jVi forma
complete basis for the internal degree of freedom, we
conclude that, in this case, no edge modes exist near x ¼ 0.
Notably, chiral edge states are spin polarized. In

Fig. 3(d), we show that, as θ1− and θ1þ are close to π=2
(3π=2), the internal states of edge modes are almost
eigenstates of σz with eigenvalue þ1 (−1). Moreover,
polarization is associated with the chirality of the edge
states; i.e., the spin component of edge states propagating
in the þy (−y) direction is almost j↑i (j↓i), which is a
result of the spin-orbit interaction inherent in the spin-
dependent translation operations as Eq. (2). Depending on
parameter choices, edge-state polarization can deviate from
the eigenstates of σz [31,35].
Robustness of chiral edge states is revealed (Fig. 4)

through changing the shape of the boundary by altering the
voltage signal pattern applied to the EOM. As shown in

(a)

(b) (c) (d)

FIG. 4. Robustness of topologically protected edge states. (a) The measured probability distributions Pðx; y; nÞ of the inhomogeneous
2DQW with a boundary including two right angles, where the first right angle is at the position (0,7) and the second is at (7,7). The red
line is to guide the eye. θ1 for the left and right sides of the boundary are π=6 and 5π=6, respectively. (b)–(d) The simulated [(b)] and
experimentally measured [(c)–(d)] probability distributions Pðx; y; 25Þ of the inhomogeneous 2DQW (θ1− ¼ π=4, θ1þ ¼ 3π=4) with a
straight-line edge at x ¼ 0. Only odd sites are shown as the probabilities for even sites are zero. The schematic electro-optic modulator
(EOM) signals of one step period are shown below the probability distributions correspondingly. In the theoretical simulation [(b)], a
sharp boundary without impurities at the boundary and no disorder in the bulk are assumed. In (c), a 2 × 5-sized impurity is introduced
along the boundary (marked as a yellow nub), where the on-site θ1 is π=2. In (d), a noisy EOM signal is applied, corresponding to a
spatially disordered rotation operation Rðθ1Þ where the value of θ1 for each position ðx; yÞ of x < 0 and x ≥ 0 is randomly generated
from the range of (θ1− − δθ; θ1− þ δθ) and (θ1þ − δθ; θ1þ þ δθ), respectively, where δθ ¼ 0.46 rad.
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Fig. 4(a), the wave packet of edge states propagates along
the irregular boundary with two right angles. The small
mismatch between the experimental evolution path and
theoretical prediction could result from the limited modu-
lation speed of the EOM [31]. The fidelity of Pðx; y; 25Þ
is 0.807� 0.002.
Furthermore, an impurity is introduced at the edgewith on-

site parameters dramatically different from those of both the
left and right bulks, where the schematic EOM signal of one
driving period is shown in the bottom half of Fig. 4(c).
Scattering-free edge states are observed [Fig. 4(c)]. The
fidelity of Pðx; y; 25Þ is 0.956� 0.002 compared to the
theoretically simulated case without impurities [Figs. 4(b)].
Finally, we add random noise into the EOM signal
[Fig. 4(d)]. To simulate the impact of spatial disorder, the
noisy signal of a single step is repeatedlyapplied for25driving
periods.A considerable probability of thewalker remaining at
positions near the boundary is detected and the final distri-
bution has a fidelity of 0.931� 0.002 with that of Fig. 4(b).
The insensitivity todynamicdisorder is also confirmed,where
the spatial disorder is changing over time [31].
In conclusion, we implement inhomogeneous 2DQWs

up to 25 steps with a time-bin encoded photonic circuit.
Spin-polarized chiral edge states are observed at the inter-
face between two topologically distinct quantum walk
regions, and their robustness against various local pertur-
bations is confirmed. Our results agree with theoretical
predictions and demonstrate topological protection arising
from the Rudner winding number rather than from the
Chern number, which suggests that time-dependent dynam-
ics during one driving period is crucial to understanding
the topological classification of driven systems. Deeper
understanding of the dynamical topological order and its
extension to driven many-body systems require further
theoretical and experimental investigation [36,37].
Our flexible scheme provides a proper platform for a

systematic investigation of the topological phase transition
of high-dimensional quantum systems [18,38–40], and for
wide-ranging other quantumsimulations [41–43].Wenotice
that similar experimental results are reported in Ref. [44].
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