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Quantum walks (QWs) provide a powerful tool as a quantum simulator to study and understand
topological phases. Using such a quantum simulator, some topological phenomena have been discussed.
However, all the experimental observations on the topological phenomena in QWs have been restricted to
evolution in one dimension (1D) so far. The existing 2D experimental platforms cannot be applied to study
topological phenomena due to lack of full control in the position space. Thus, some interesting topological
phenomena in the 2D QW that do not exist in the 1D case, e.g., the edge-state-enhanced transport, have not
been demonstrated experimentally. Here we report the experimental realization of 2D QW using spatial
positions and orbital angular momentum of light. Based on our constructed experimental platform, we have
observed 2D topological bound states with vanishing Chern numbers and confirmed the robustness of these
bound states with respect to perturbations and disorder, which go beyond what has been known in static
systems and are unique to periodically driven systems. Our studies not only represent an important advance
in the study of topological phases, but also open up an avenue to explore topological properties in
multidimensional QWs.
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Topological phases exhibit some most striking phenom-
ena in modern physics. A prominent feature of a topologi-
cal phase is the emergence of topologically protected edge
states, which are robust against local perturbations and play
a crucial role in the topological functionality of the
underlying system [1–7]. Such a phenomenon has been
extensively studied in condensed matter physics such as the
quantum Hall effect and the quantum spin Hall effect,
topological insulators, and topological superconductors
[8–11]. Topological phases of the system can be classified
by standard topological invariants, such as Chern numbers
[12,13]. Recently, anomalous topologically protected edge
states have been shown in propagating waveguide arrays
with different Floquet orders [14–20].
On the other hand, recent investigations have also shown

that quantum walks (QWs) can not only provide a versatile
platform for studying static topological phases but also give
unique opportunity to study topological phenomena in
driven systems [21–38]. Based on such a platform, topo-
logically protected pairs of nondegenerate bound states,
topological quantum transitions, and topological invariants
have been observed experimentally [26,31–37]. However,
all these observations have been restricted to evolution in
one dimension (1D). Some theoretical investigations have
shown that 2D QWs can exhibit much richer topological
phenomena than 1D QWs, e.g., the edge-state-enhanced
transport in the 2D QW [38,39]. To observe these phenom-
ena, an adequate control of positions in the 2D QW is
required. Although 2D QWs have been experimentally

realized in optical fiber networks, 2D waveguide arrays and
photons [40–44], the positions in these systems cannot be
fully controlled. Thus, the topological phenomena in 2D
QWs cannot be observed based on these experimental
platforms.
Here we construct a new 2D QW platform in which

spatial positions and orbital angular momentum (OAM)
states of light serve as two distinct degrees of freedom in
the position space of 2D QWs. In the experiment, we
employ a customized q plate involving multiple patterns to
match the parallel multibeams produced by beam displacers
(BDs), then construct inhomogeneous regions in 2D QWs
by applying different coin operators to the beams in
different spatial positions. Topologically protected bound
states can be formed at the boundary between these
inhomogeneous regions. Especially, we observe topologi-
cally protected bound states with vanishing Chern numbers,
which go beyond what has been known in static systems
and is unique to the periodically driven systems. As the first
experiment to observe topological phases in the 2D QW,
our work opens up an avenue to study topological proper-
ties in multidimensional QWs.
Experimental realization of the 2D quantum walk.—Our

experimental setup to perform the 2D QW is illustrated in
Fig. 1, which consists of three modules: Fig. 1(a), state
preparation; Fig. 1(b), many steps of 2D QW; Fig. 1(c),
detection. In our experimental scheme, the coin of 2D QW
is encoded by the polarization, and the 2D lattice is mapped
to a grid implemented by the OAM states and spatial
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positions of the beam. Here, we use the classical light
source (from a 632.8 nm helium-neon laser) instead of a
single photon source to perform experiments, since the
previous investigations have shown that the QW can be
implemented using an entirely classical light source due to
the similarity between coherent processes in quantum
mechanics and classical optics [40,45]. One step operator
of the 2D QW is described as

U ¼ TyRðθ2ÞTxRðθ1Þ; ð1Þ

where Rðθ1ð2ÞÞ ¼ e−iθ1ð2Þσy=2σz is a coin operator, which is
realized by one HWP on the polarization of the beam in our
experiment [see Rðθ1Þ and Rðθ2Þ in Fig. 1(b)]. Here σy and
σz are Pauli operators in the y and z directions, respectively.
The parameter θ1ð2Þ represents the rotation angle of HWP.
In Eq. (1), Tx ¼

P
x jxþ 1ihxj ⊗ jHihHj þ jx − 1ihxj ⊗

jVihVj represents the conditional shift operator along the x

direction. We use different OAM states of beam to represent
different sites x, jHi, and jVi stand for the horizontal and
vertical polarization of the beam, respectively. The operator
Tx can be realized by shifting the OAM state depending on
the current polarization of beam, and the optical elements to
realize Tx are addressed in Fig. 1(d).
In the experiment, we use BDs to realize the conditional

shift operator Ty ¼
P

y jyþ 1ihyj ⊗ jHihHj þ jy − 1i
hyj ⊗ jVihVj. Different output spatial positions on the
lateral section of BD are used to represent different sites
y in the 2D QW [26,42,46,47]. The optical realizations of
Tx and Ty are given in the Supplemental Material (SI) [48].
As presented in the experiment [see Fig. 1(b)], we use

two semicircular HWPs Rðθ2;þÞ and Rðθ2;−Þ to work on
beams whose spatial positions belong to 0 ≤ y < Ny and
−Ny < y < 0, respectively. When the input beam enters
the module [Fig. 1(b)], it undergoes the operations Rðθ1Þ,
Tx, Rðθ2Þ, and Ty one by one in step 1. Such a process is
described schematically in Fig. 1(f). The coordinates x and
y in the 2D x − y plane of Fig. 1(f) are mapped from OAM
states and spatial positions of the beam, respectively.
Because of the conditional movements along the x and y
directions with Tx and Ty, the 2D walker emerges at four
different sites with certain probabilities [see Fig. 1(f)] after
the first step of 2D QW is completed. To undergoN steps of
2D QW, we experimentally repeat the above series of
operations N times on the input beam; see Fig. 1(b). Then,
the beams transport into the detection module in Fig. 1(c).
Details of detection are addressed in the Supplemental
Material (SI) [48].
In Figs. 2(a)–2(c), we provide experimental probability

distributions at the fourth step in a homogeneous 2D QW.
The results for other steps (n ≤ 3) are provided in the
Supplemental Material (SII) [48]. The similarity S½Pthðx; yÞ;
Pexðx; yÞ� ¼ ðPN

x;y¼−N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pthðx; yÞPexðx; yÞ

p Þ2 is presented
to evaluate the quality of experiment. Here Pthðx; yÞ
[Pexðx; yÞ] represents the theoretical [experimental] proba-
bility distribution in the 2D QW. When the experimental
result is close to the theoretic result, the value of S
approaches 1.

FIG. 1. Experimental scheme for 2D QWs. (a) State prepara-
tion. (b) Many steps of 2D QW. In our study of probing
topological properties in 2D QWs, we create spatially inhomo-
geneous rotations in regions −Ny < y < 0 and 0 ≤ y < Ny,
which are realized by semicircular HWPs Rðθ2;þÞ and Rðθ2;−Þ
in (b). (c) Detection. (d) Tx. (e) The list of all optical devices.
(f) The schematic representation of first step in a 2D QW.
Rotation angles: purple region, Rðθ1Þ, Rðθ2;þÞ; yellow region,
Rðθ1Þ, Rðθ2;−Þ.

FIG. 2. (a)–(c) Experimental probability distributions in a homogeneous 2D QW at the fourth step. The walker starts from the lattice
site (0,0) and rotation angles are θ1 ¼ θ2;þ ¼ θ2;− ¼ ðπ=2Þ. Error bars indicate the standard deviation. The initial polarizations of light
are (a)jVi, (b) jDi ¼ 1=

ffiffiffi
2

p ðjHi þ jViÞ, (c) jLi ¼ 1=
ffiffiffi
2

p ðjHi þ ijViÞ. (d) The variances between 2D QWs and CRW with steps.
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From Figs. 2(a)–2(c), we find that mean positions
ðx̄; ȳÞex ¼

P
x;yðx; yÞPexðx; yÞ for these probability distri-

butions are ðx̄; ȳÞex ¼ ð0.30; 0.41Þ, (−1.04, −0.09), and
(−0.04, 1.6), which are different from classical random
walks (CRW) with the mean position (0,0). To better
illustrate the difference between QWs and CRW, we
theoretically provide the variances in Fig. 2(d). The
variance is defined as υ¼P

x;yPthðx;yÞjðx;yÞ−ðx̄;ȳÞthj2
with the theoretical mean position ðx̄; ȳÞth ¼

P
x;y

ðx; yÞPthðx; yÞ. The variances for 2D QWs with initial
polarizations jVi, jDi ¼ 1=

ffiffiffi
2

p ðjHi þ jViÞ and jLi ¼ 1=ffiffiffi
2

p ðjHi þ ijViÞ are addressed as blue circles, dots, and
rectangles in Fig. 2(d). The variance for CRW is presented
as red diamonds for comparison. The variances increasing
quadratically with steps display the ballistic spreading of
QWs. In contrast, the variance in CRW grows linearly with
steps. Since the variance is closely related to the probability
distribution, we can obtain the values of variances for
experimentally measured probability distributions; e.g., in
Figs. 2(a)–2(c), the values of variances are 10.9, 9.6, and
12.0. However, the variance for CRWat the fourth step is 8.
This means that 2D QWs have indeed been achieved in our
experiments.
Experimental observation of topologically protected

bound states with vanishing Chern numbers.—To observe
topological bound states in 2D QWs, we need to create
spatially inhomogeneous regions in the walk, which cannot
be realized in the previous experimental platforms [40–44].

Here, as addressed in Fig. 1(b), an inhomogeneous 2D QW
can be realized by applying different coin operators Rðθ2;þÞ
and Rðθ2;−Þ to spatial positions 0 ≤ y < Ny and −Ny <
y < 0. A boundary between the purple region and yellow
region shown in Fig. 1(f) can be constructed. Figure 3(c)
shows experimental probability distribution at the fourth
step in 2D lattice sites. The corresponding probability
distributions at other steps are given in the Supplemental
Material (SV) [48].
From Fig. 3(c), it is clearly seen that large localized

probability distribution appears along the boundary even at
the fourth step, which hints at the emergence of bound
states. According to the topology theory, bound states exist
at the boundary between two regions governed by
Hamiltonians with different Chern numbers [1–3,12,
13,38]. In order to further analyze the above phenomenon,
we plot the phase diagram described by the Chern number
for different θ1 and θ2 in Fig. 3(a). The calculations of
Chern numbers in the 2D QW have been addressed in
Secs. SIII and SIV of Supplemental Material [48]. The
rotation angles of coin operators ðθ1; θ2;−Þ and ðθ1; θ2;þÞ in
the experiment [results shown in Fig. 3(c)] are marked as
green squares in Fig. 3(a). When the rotation angles change
continuously from ðθ1; θ2;þÞ to ðθ1; θ2;−Þ, the 2D QW
needs to cross the gapless phases addressed as dashed lines.
In Fig. 3(b), we provide the corresponding eigenvalues λ ¼
e−iε of U. We find that the bound states with ε ¼ 0 and
ε ¼ π emerge at the boundary between regions with two
zero Chern number phases. In this case, the emergence of

FIG. 3. (a)–(c) Experimental observations of bound states. (a) The phase diagram for 2D QW. Green squares in A (θ1 ¼ ðπ=2Þ,
θ2;− ¼ −ð2π=15Þ) and B (θ1 ¼ ðπ=2Þ, θ2;þ ¼ ð10=9Þπ) represent rotation angles of coin operators used in (b) and (c). (b) The
eigenvalues λ ¼ e−iε of U. Red dots indicate ε ¼ 0 and ε ¼ π energy bound states. (c) Measured probability distribution at the fourth
step. (d)–(f) Experimental observations of no bound states. (d) The phase diagram for 2D QW. Red triangles represent rotation angles of
coin operators in (e) and (f). Left (θ1 ¼ ðπ=2Þ, θ2;− ¼ −ðπ=3Þ); right (θ1 ¼ ðπ=2Þ, θ2;þ ¼ ðπ=18Þ). (e) The eigenvalues λ ¼ e−iε of U.
(f) Measured probability distribution at the fourth step. In (c) and (f), the walker starts from the lattice site (0,0), and the initial
polarization of light is jHi. Error bars indicate the standard deviation.
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bound states cannot be fully characterized by Chern
numbers, and the bulk-boundary correspondence theorem
is not satisfied [2].
For comparison, we choose coin rotations ðθ1; θ2;þÞ and

ðθ1; θ2;−Þ of U located in the same region A of the phase
diagram [Fig. 3(d)] and study the topological phenomena
with such operator U. In this case, when rotation angles
change continuously from ðθ1; θ2;þÞ to ðθ1; θ2;−Þ, the
effective Hamiltonian of QW is always gapped without
crossing the gapless phase. The corresponding eigenvalues
λ ¼ e−iε of U are shown in Fig. 3(e) and bound states
cannot be found. In Fig. 3(f), we present experimental
probability distribution in this 2D QW. The initial settings
of the input beam are identical with those in Fig. 3(c).
However, the phenomenon is completely different. In the
present case, the probability along the boundary between
the purple and yellow regions decreases quickly as the step
increases, which reveals that there are no bound states in the
present 2D QW.
The above phenomenon can be described very well by

localized probabilities at the boundary Pbound. Here Pbound
is defined as Pbound ¼ Pðy ¼ 0Þ þ Pðy ¼ −1Þ, Pðy ¼ 0Þ,
and Pðy ¼ −1Þ are marginal probabilities along y ¼ 0 and
y ¼ −1 in 2D QW, respectively. In Fig. 4(a), we provide
localized probabilities with step. Black squares and red
circles represent theoretical and experimental results for the
case in Fig. 3(a)–3(c). We find that Pbound always keeps a
large value with the increase of steps. In contrast, for the
case without bound states in Fig. 3(d)–3(f), Pbound
decreases to a small value (Pbound ≤ 0.1) very quickly.
Blue upper triangles (theory) and green lower triangles
(experiment) show such a case. In addition, we notice that
when the step of QW n ≥ 4, it is clearly to distinguish
between cases with and without bound states.
The above experiments illustrate that the existence of

bound states in the inhomogeneous 2D QW does not
depend on Chern numbers or the bulk-boundary corre-
spondence theorem. The observation of bound states in the
inhomogeneous 2D QW requires the system to cross
gapless phases when changing continuously from
ðθ1; θ2;þÞ to ðθ1; θ2;−Þ. Similar phenomena have been
theoretically analyzed in Ref. [38]. Furthermore, such
bound states have the topological origin. In the following
we test the robustness of these bound states against small
perturbations and disorder.
We introduce the small variation of rotation angles

with the case in Fig. 3(c), which is indicated as brown
circles in Fig. 4(b). Figure 4(c) displays the corresponding
experimental probability distribution at the fourth step.
Probability distributions for other steps (n ≤ 3) are pro-
vided in Sec. SVI of the Supplemental Material [48]. We
find that the localized probability along the boundary
always appears when the rotation angle varies without
crossing gapless phases. From the inset of Fig. 4(c), we find
that bound states along the boundary appear. If we change

the initial polarization to jDi, in Fig. 4(d), we find that
localized probabilities at the boundary emerge and bound
states still exist. That is to say, these bound states are robust
against small perturbations in 2D QWs. Furthermore, in
order to test the robustness of topologically bound states
against the disorder, we randomly generate ten sets of coin
rotations and provide the mean values of probabilities at the
fourth step in Fig. 4(f). Comparing the probability distri-
butions in Figs. 4(f) and 4(e), we find that the measured
probability distributions with the disorder [Fig. 4(f)] are

FIG. 4. (a) The localized probability Pbound at the boundary in
2D QWs with step. The cases with and without bound states are
obviously different with the step n ≥ 4. (b) The phase diagram for
the 2D QW. Brown circles, green squares and red diamonds are
coin rotations in (c),(d), and (e). (c)–(d) Bound states are robust
against small perturbations. (c) Measured probability distribution
at the fourth step with rotation angles changing from the case in
Fig. 3(c) to (θ1 ¼ ðπ=2Þ, θ2;− ¼ −ðπ=3Þ) and (θ1 ¼ ðπ=2Þ,
θ2;þ ¼ ð4π=3Þ). (d) Measured probability distribution at the
fourth step with initial polarization changing to jDi. Error bars
indicate the standard deviation. Insets in (c) and (d), the
eigenvalues λ ¼ e−iε of U, red dots indicate bound states. (e)–
(f) Bound states are robust against disorder. Measured probability
distributions at the fourth step without (e) and with (f) disorder.
(e) Parameters are (θ1 ¼ ðπ=2Þ, θ2;− ¼ −ðπ=9Þ) and (θ1 ¼
ðπ=2Þ, θ2;þ ¼ ð10=9Þπ); inset, the eigenvalues λ ¼ e−iε of U,
red dots indicate bound states. (f) Compared with the case in (e),
the disorder is introduced to θ2� þ δθ, where δθ is chosen
uniformly from the intervals [−ð2π=9Þ, (2π=9)].
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highly similar to those without the disorder [Fig. 4(e)],
which demonstrate the robustness of bound states against
the disorder.
In summary, we have constructed a new 2D QW

experimental platform using spatial positions and OAM
of light. The advantage of full control of each lattice site in
the 2D QW makes our experimental platform suitable for
topological study. We have observed 2D topological edge
states with vanishing Chern numbers and confirmed the
robustness of these edge states against small perturbations
and disorder. Such a phenomenon goes beyond what has
been known in static systems and is unique to periodically
driven systems. In addition, our experimental setup can also
be used as a powerful platform to study other topics
including energy transport in the 2D QW and so on
[38,39,49–51]. Furthermore, our construction opens up a
new avenue to implement high-dimensional QWs in the
experiment, which are prerequisites to realize quantum
search algorithms [52,53].

This work was supported by the National Key Research
and Development Program of China under Grant
No. 2017YFA0303800 and the National Natural Science
Foundation of China (11574031 and 11604014).

Note added.—Recently, we have noticed that topologically
protected edge states in a 2D QW have been also exper-
imentally observed in a fiber-loop architecture [54].
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