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While the enhancement of spin-space symmetry from the usual SU(2) to SUðNÞ is promising for finding
nontrivial quantum spin liquids, its realization in magnetic materials remains challenging. Here, we
propose a new mechanism by which SU(4) symmetry emerges in the strong spin-orbit coupling limit. In d1

transition metal compounds with edge-sharing anion octahedra, the spin-orbit coupling gives rise to
strongly bond-dependent and apparently SU(4)-breaking hopping between the Jeff ¼ 3=2 quartets.
However, in the honeycomb structure, a gauge transformation maps the system to an SU(4)-symmetric
Hubbard model. In the strong repulsion limit at quarter filling, as realized in α-ZrCl3, the low-energy
effective model is the SU(4) Heisenberg model on the honeycomb lattice, which cannot have a trivial
gapped ground state and is expected to host a gapless spin-orbital liquid. By generalizing this model to
other three-dimensional lattices, we also propose crystalline spin-orbital liquids protected by this emergent
SU(4) symmetry and space group symmetries.
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Introduction.—Nontrivial quantum spin liquids (QSLs)
are expected to exhibit many exotic properties such as
fractionalized excitations [1,2], in addition to the absence
of long-range order. Despite vigorous studies in the last
several decades, however, material candidates for such
QSLs are still rather limited.
An intriguing scenario to realize a nontrivial QSL is by

generalizing the spin system, which usually consists of
spins representing the SU(2) symmetry to SUðNÞ “spin”
systems with N > 2. We expect stronger quantum fluctua-
tions in SUðNÞ spin systems with a larger N, which could
lead the system to an SUðNÞ QSL even on unfrustrated,
bipartite lattices, including the honeycomb lattice [3–6].
The SUðNÞ spin systems with N > 2 can be realized in

ultracold atomic systems, using the nuclear spin degrees of
freedom (d.o.f.)[7]. In electron spin systems, however,
realization of this SUðNÞ symmetry is more challenging.
It would be possible to combine the spin and orbital d.o.f. so
that local electronic states are identified with a representation
of SUðNÞ. QSL realized in this context may be called
quantum spin-orbital liquids (QSOLs) because it involves
spin and orbital d.o.f. Despite the appeal of such a possibility,
the actual Hamiltonian is usually not SUðNÞ-symmetric,
reflecting the different physical origins of the spin and orbital
d.o.f. For example, the relevance of an SU(4)QSOLhas been
discussed for Ba3CuSb2O9 (BCSO) with a decorated honey-
comb lattice structure [5,8,9]. It turned out, however, that the
estimated parameters for BCSO are rather far from themodel
with an exact SU(4) symmetry [10].Moreover, the spin-orbit
coupling (SOC) and the directional dependence of the orbital

hopping usually break both the spin-space and orbital-space
SU(2) symmetries, as exemplified in iridates [11]. Thus, it
would seem even more difficult to realize an SUðNÞ-
symmetric system in real magnets with SOC. (See
Refs. [12–15] for the proposed realization of SUðNÞ sym-
metry. However, they do not lead to QSOL because of their
crystal structures).
In this Letter, we demonstrate a novel mechanism for

realizing an SU(4) spin system in a solid-state system with
an on site SOC. Paradoxically, the symmetry of the spin-
orbital space can be enhanced to SU(4) when the SOC
is strong. In particular, we propose α-ZrCl3 [16–18] as
the first candidate for an SU(4)-symmetric QSOL on the
honeycomb lattice. Its d1 electronic configuration in the
octahedral ligand field, combined with the strong SOC,
implies that the ground state of the electron is described by
a Jeff ¼ 3=2 quartet [19]. In fact, the resulting effective
Hamiltonian appears to be anisotropic in the quartet space.
Nevertheless, we show that the model is gauge equivalent
to an SU(4)-symmetric Hubbard model. In the strong
repulsion limit, its low-energy effective Hamiltonian is
the Kugel-Khomskii model [20] on the honeycomb lattice,
exactly at the SU(4) symmetric point,

Heff ¼ J
X
hiji

�
Si · Sj þ

1

4

��
Ti · Tj þ

1

4

�
; ð1Þ

where J > 0, and Sj and Tj are pseudospin-1=2 operators
defined for each site j. SU(4) symmetry can be made
manifest by rewriting the Hamiltonian, up to a constant
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shift, asHeff ¼ ðJ=4ÞPhiji Pij, where the spin state at each
site forms the fundamental representation of SU(4), and Pij

is the operator which swaps the states at sites i and j. This is
a natural generalization of the antiferromagnetic SU(2)
Heisenberg model to SU(4).
The ground state of the SU(2) spin-1=2 antiferromagnet

on the honeycomb lattice is simply Néel ordered [21,22],
reflecting the unfrustrated nature of the lattice. On the other
hand, the SUðNÞ generalization of the Néel state by putting
different flavors on neighboring sites gives a macroscopic
number of classical ground states when N > 2 [23–25],
implying its instability. In fact, it was argued that the SU(4)
antiferromagnet on the honeycomb lattice has a QSOL
ground state without any long-range order [5,6].
Candidate materials.—As we mentioned in the

Introduction, we propose α-ZrCl3 with a honeycomb
geometry as the first candidate for the d1 honeycomb
system, as shown in Fig. 1. More generally, we consider the
class of materials α-MX3, with M ¼ Ti, Zr, Hf, etc. and
X ¼ F, Cl, Br, etc. Their crystal structure is almost the
same as that of α-RuCl3, which is known to be an
approximate realization of the Kitaev honeycomb model
[26,27]. However, the electronic structure of α-MX3 is
different from α-RuCl3; here,M is in the 3þ state with a d1

electronic configuration in the octahedral ligand field. Our
strategy for the realization of SU(4) spin models starts with
a low-energy quartet of electronic states with the effective
angular momentum Jeff ¼ 3=2 on each M.
For this description to be valid, the SOC has to be strong

enough. As the atomic number increases from Ti to Hf, SOC
gets stronger, and the description by the effective angular
momentum becomes exact. The compounds α-MCl3 with
M ¼ Ti, Zr, and related Na2VO3 have been already reported
experimentally. For α-TiCl3, a structural transition and
opening of the spin gap at T ¼ 217 K have been reported
[28]. This implies a small SOC, as is consistent with a
massively degenerate manifold of spin singlets expected in
the limit of a vanishingSOC [29]. In compoundswith heavier

elements, the strong SOC can convert this extensively
degenerate manifold of product states into a resonating
quantum state. Thus, we expect realization of the SU(4)
QSOL due to strong SOCwith metal ions heavier than Ti. In
the following, we pick up α-ZrCl3 as an example, although
the same analysis should apply to α-HfCl3 and A2M0O3

(A ¼ Na, Li, etc., M0 ¼ Nb, Ta, etc.) as well.
Effective Hamiltonian.—In the strong ligand field, the

description with one electron in the threefold degenerate t2g
shell for α-ZrCl3 becomes exact. We denote these dyz, dzx,
and dxy orbitals by a, b, c, respectively. Let ajσ, bjσ, and cjσ
represent annihilation operators on these orbitals on the jth
site of Zr3þ with spin σ and nξσj with ξ ∈ fa; b; cg the
corresponding number operators.We also use this ða; b; cÞ ¼
ðyz; zx; xyÞ notation to label bonds; each Zr–Zr bond is called
a ξ bond (ξ ¼ a, b, c) when the superexchange pathway is on
the ξ plane [30], as illustrated in Fig. 2.
We define a Jeff ¼ 3=2 quartet spinor as ψ ¼

ðψ↑↑;ψ↑↓;ψ↓↑;ψ↓↓Þt ¼ ðψ3=2;ψ−3=2;ψ1=2;ψ−1=2Þt, where
ψJz is the annihilation operator for the jJ ¼ 3=2; Jzi state.
Assuming the SOC is the largest electronic energy scale,
except for the ligand field splitting, fermionic operators can
be rewritten by the quartet ψ jτσ as follows:

a†jσ ¼
σffiffiffi
6

p ðψ†
j↑σ̄ −

ffiffiffi
3

p
ψ†
j↓σÞ; ð2Þ

b†jσ ¼
iffiffiffi
6

p ðψ†
j↑σ̄ þ

ffiffiffi
3

p
ψ†
j↓σÞ; ð3Þ

c†jσ ¼
ffiffiffi
2

3

r
ψ†
j↑σ; ð4Þ

where the indices τ and σ of ψ jτσ label the pseudoorbital
and pseudospin indices, respectively. We begin from the
following Hubbard Hamiltonian for α-ZrCl3,

FIG. 1. Geometric structure of honeycomb α-ZrCl3. Cyan and
light green spheres represent Zr and Cl, respectively. The
crystallographic axes are shown and labeled as the 1 and 2
directions.

FIG. 2. (a) Superexchange pathways between two Zr ions
connected by a c bond (blue) in α-ZrCl3. White and gray spheres
represent Zr and Cl atoms, respectively. (b) Three different types
of bonds in α-ZrCl3. Red, light green, and blue bonds represent a,
b, and c bonds on the yz, zx, and xy planes, respectively.
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H ¼ −t X
σ;hiji∈α

ðβ†iσγjσ þ γ†iσβjσÞ þ H:c:

þU
2

X
j;ðδ;σÞ≠ðδ0;σ0Þ

nδσjnδ0σ0j; ð5Þ

where t is a real-valued hopping parameter through the
hopping shown in Fig. 2(a), U > 0 is the Hubbard inter-
action, hiji ∈ α means that the bond hiji is an α bond, and
hα; β; γi runs over every cyclic permutation of ha; b; ci, and
δ; δ0 ∈ fa; b; cg. By inserting Eqs. (2)–(4), we get

H¼− tffiffiffi
3

p
X
hiji

ψ†
i Uijψ jþH:c:þU

2

X
j

ψ†
jψ jðψ†

jψ j−1Þ; ð6Þ

where ψ j is the Jeff ¼ 3=2 spinor on the jth site, and Uij ¼
Uji is a 4 × 4 matrix

Uij ¼

8>><
>>:

Ua ¼ τy ⊗ I2 ðhiji ∈ aÞ
Ub ¼ −τx ⊗ σz ðhiji ∈ bÞ
Uc ¼ −τx ⊗ σy ðhiji ∈ cÞ

; ð7Þ

where Im is the m ×m identity matrix, while τ and σ are
Pauli matrices acting on the τ and σ indices of ψ jτσ ,
respectively. We note that Ua;b;c are unitary and
Hermitian, and thus, Uji ¼ Uij

† ¼ Uij.
Now, we consider a (local) SU(4) gauge transformation,

ψ j → gjψ j; Uij → giUijg
†
j ; ð8Þ

where gj is an element of SU(4) defined for each site j. For
every loop C on the lattice, the SU(4) flux defined by the
product

Q
hiji∈CUij is invariant under the gauge

transformation.
Remarkably, for each elementary hexagonal loop (which

we call plaquette) p in the honeycomb lattice with the
coloring illustrated in Fig. 2(b),

Y
hiji∈p

Uij¼UaUbUcUaUbUc ¼ðUaUbUcÞ2¼−I4; ð9Þ

which corresponds to just an Abelian phase π. Since all the
flux operators on the honeycomb lattice can be made of
some product of these plaquettes, there is an SU(4) gauge
transformation to reduce the model (6) to the π-flux
Hubbard model H with global SU(4) symmetry, as proven
in Sec. A of the Supplemental Material (SM) [31].

H¼− tffiffiffi
3

p
X
hiji

ηijψ
†
iψ jþH:c:þU

2

X
j

ψ†
jψ jðψ†

jψ j−1Þ;

ð10Þ
where the definition of ηij ¼ �1, arranged to insert a π flux
inside each plaquette, is included in Sec. A of the SM [31].

At quarter filling, i.e., one electron per site, which is the
case in α-ZrCl3, the system becomes a Mott insulator
for a sufficiently large U=jtj. The low-energy effective
Hamiltonian for the spin and orbital d.o.f., obtained by the
second-order perturbation theory in t=U, is the Kugel-
Khomskii model exactly at the SU(4) point (1), with
S ¼ σ=2, T ¼ τ=2, and J ¼ 8t2=ð3UÞ in the transformed
basis set. We note that the effective Hamiltonian does not
depend on the phase factor ηij, as it cancels out in the
second-order perturbation in t=U. Corboz et al. argued that
this SU(4) Heisenberg model on the honeycomb lattice
hosts a gapless QSOL [5]. Therefore, we have found a
possible realization of gapless QSOL in α-ZrCl3 with an
emergent SU(4) symmetry.
The nontrivial nature of this model may be understood in

terms of the Lieb-Schultz-Mattis-Affleck (LSMA) theorem
for the SUðNÞ spin systems [25,47–49], generalized to
higher dimensions [47,50–53]. As a result, under SUðNÞ
symmetry and translation symmetry, the ground state of the
SUðNÞ spin system with n spins of the fundamental
representation per unit cell cannot be unique, if there is a
nonvanishing excitation gap and n=N is not an integer. This
rules out a featureless Mott insulator phase, which is defined
as a gapped phase with a unique ground state, namely,
without any spontaneous symmetry breaking or topologi-
cal order.
For the honeycomb lattice (n ¼ 2), there is no LSMA

constraint for an SU(2) spin system [54]. Nevertheless, for
the SU(4) spin system we discuss in this Letter, a twofold
ground-state degeneracy is required to open the gap. This
suggests the stability of a gapless QSOL phase of the SU(4)
Heisenberg model on the honeycomb lattice. Especially,
assuming theπ-fluxDirac spin-orbital liquid ansatz proposed
in Ref. [5] is correct, a mass gap for the Dirac spectrum is
forbidden unless the SU(4) or translation symmetry is
broken. Detailed analysis based on the LSMA theorem will
be discussed in a separate publication [55].
Other possible structures.—In addition to three-dimen-

sional (3D) inorganic polymorphs [31], metal-organic
frameworks (MOFs) with motifs listed in Fig. 3 are an
interesting playground to explore a variety of SU(4)
QSOLs. It was recently argued [56] that Kitaev spin liquids
can be realized in MOFs by a mechanism similar to the one
in iridates [11]. Since the present derivation of an emergent

O O

O O
Zr Zr Zr

E

E

E

E

Zr Zr

N
H

H
N

N

N

N
H

H
N

Zr

(a) (b) (c)

E = O, S, NH

FIG. 3. Other possible superexchange pathways between two
metal ions. (a) Zr–O–O–Zr. (b) Oxalate-based metal-organic
motif. (E ¼ O, S, NH.) (c) Tetraaminopyrazine-bridged metal-
organic motif.
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SU(4) symmetry shares the same t2g hopping model as in
Ref. [11], it is also expected to apply to Zr- or Hf-based
MOFs. While Fig. 3(a) shows the longer superexchange
pathways expected in oxides similar to triangular iridates
[57], Figs. 3(b) and 3(c) show the superexchange pathways
possible in Zr- or Hf-based MOFs. With these oxalate- or
tetraaminopyrazine-based ligands, we can expect the two
independent superexchange pathways similar to α-ZrCl3 as
discussed in Ref. [56].
Following the case of the honeycomb lattice, we can

repeat the same analysis to derive the effective spin-orbital
model for each 3D tricoordinated lattice. Recently, the
classification of spin liquids on various tricoordinated
lattices has attracted much attention, so it is worth inves-
tigating [58–60]. All the tricoordinated lattices considered
in this Letter are listed in Table I. The table is based on the
classification of tricoordinated nets by Wells [61]. We use a
Schläfli symbol ðp; cÞ to label a lattice, where p is the
shortest elementary loop length of the lattice, and c ¼ 3
means the tricoordination of the vertices. For example,
(6,3) is the two-dimensional (2D) honeycomb lattice, and
all the other lattices are 3D tricoordinated lattices, distin-
guished by additional letters following Wells [61]. Here,
82.10-a is a nonuniform lattice, and thus, the notation is
different from the other lattices. Generalizing the discus-
sion on the honeycomb lattice, if the SU(4) flux for any
loop C is reduced to an Abelian phase ζC as

Q
hiji∈C Uij ¼

ζCI4 (for ∀C), the Hubbard model acquires SU(4) sym-
metry. We have examined [31,55] this for each lattice in
Table I, where a checkmark is put on the SU(4) column if
the above condition holds. Moreover, in order to form a

stable structure with the present mechanism, the bonds
from each site must form 120 degrees and an octahedral
coordination. This condition is again checked for each
lattice and indicated in the 120° bond column [60] of
Table I. We also put a checkmark on the LSMA column,
when the LSMA theorem implies a ground state degen-
eracy or gapless excitations for the SU(4)-symmetric
Hubbard model. For example, the LSMA constraint applies
to the (8,3)-b lattice, since n=N ¼ 6=4 is fractional.
Crystalline spin-orbital liquids.—Finally, we discuss the

generalization of the concept of crystalline spin liquids
(XSL) [63] to SU(4)-symmetric systems. In the context of
gapless Kitaev spin liquids as proposed in Ref. [63], a
crystalline spin liquid is defined as a spin liquid state where
a gapless point (or a gapped topological phase) is protected
not just by the unbroken time reversal or translation
symmetry but by the space group symmetry of the lattice.
In the (10,3) lattices listed in Table I, the unit cell consists
of a multiple of four sites, and thus, the generalized LSMA
theorem seems to allow a featureless insulator if we only
consider the translation.
Following Refs. [64–66], however, we can effectively

reduce the size of the unit cell by dividing the unit cell by
the nonsymmorphic symmetry, and thus, the filling con-
straint becomes tighter with a nonsymmorphic space group.
Even in the (10,3) lattices, the gapless QSOL state can be
protected by the further extension of the LSMA theorem
[55]. We call them crystalline spin-orbital liquids (XSOLs)
in the sense that these exotic phases are protected in the
presence of both SU(4) symmetry and (nonsymmorphic)
space group symmetries. We put a checkmark on the
LSMA column of Table I if either the standard or extended
LSMA theorem applies.
Discussion.—We found that, as a consequence of the

combination of the octahedral ligand field and SOC, SU(4)
symmetry emerges in α-ZrCl3. In addition to the ZrCl3 (or
A2M0O3 [31]) family we have discussed, Zr- or Hf-based
MOFs could also realize SU(4) Heisenberg models on
various tricoordinated lattices. Especially, 3D ð10; 3Þ-a
[67], ð10; 3Þ-b [68], and 82.10-a [63,69] lattices, as well
as the 2D honeycomb lattice [70], were already realized in
some MOFs with an oxalate ligand. Thus, we can expect
that microscopic models defined by Eq. (5) on various
tricoordinated lattices will apply in the same way as the
honeycomb α-ZrCl3 if we replace the metal ions of these
MOFs with Zr3þ, Hf3þ, Nb4þ, or Ta4þ [56].
It would be also interesting to investigate SU(4)

Heisenberg models on nontricoordinated lattices.
Especially, on the lattice with 1 or 3 sites per unit cell,
the LSMA theorem can exclude the possibility of a simply
gapped Z2 spin liquid and suggests a Z4 QSOL or new
symmetry-enriched topological phases instead.
Experimentally, muon spin resonance or nuclear mag-

netic resonance (NMR) experiments can rule out the
existence of long-range magnetic ordering or spin freezing

TABLE I. Tricoordinated lattices discussed in this Letter. Space
groups are shown in number indices. Nonsymmorphic ones are
underlined. n is the number of sites per unit cell.

Wells’
notation Lattice name

SU
(4)

120°
bond n

Space
group LSMA

ð10; 3Þ-a hyperoctagon ✓
a

✓ 4 214 ✓
b

ð10; 3Þ-b hyperhoneycomb ✓
a

✓ 4 70 ✓
b

ð10; 3Þ-d ✓
a 8 52 ✓

b

ð9; 3Þ-a hypernonagon 12 166
82:10-a ✓ ✓ 8 141
ð8; 3Þ-b hyperhexagon ✓ ✓ 6 166 ✓

c

stripyhoneycomb ✓ ✓ 8 66
(6,3) 2D honeycomb ✓ ✓ 2 ✓

d

aThe product of hopping matrices along every elementary loop is
unity, resulting in the SU(4) Hubbard model with zero flux.
bNonsymmorphic symmetries of the lattice are enough to protect
a QSOL state, i.e., hosting an XSOL state.
cAlthough the model has a π flux, with an appropriate gauge
choice the unit cell is not enlarged. Therefore, the LSMA theorem
straightforwardly applies to the π-flux SU(4) Hubbard model.
dWhile the standard LSMA theorem is not effective for the π-flux
SU(4) Hubbard model here, the magnetic translation symmetry
works to protect a QSOL state [62].
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in the spin sector. In the orbital sector, a possible exper-
imental signature to observe the absence of orbital ordering
or freezing should be finite-frequency electron spin reso-
nance (ESR) [71] or extended X-ray absorption fine
structure [9]. Especially, finite-frequency ESR can observe
the dynamical Jahn-Teller (JT) effect [72,73], where the
g-factor isotropy directly signals the quantum fluctuation
between different orbitals [71,74,75]. This is applicable to
our case because of the shape difference in the Jeff ¼ 3=2
orbitals [19], and the static JT distortion will result in the
anisotropy in the in-plane g factors [76,77]. In addition, the
specific heat or thermal transport measurements can dis-
tinguish between the gapped and gapless spectra. The
emergent SU(4) symmetry would result in changing the
universality class of critical phenomena or in the accidental
coincidence between the timescales of two different exci-
tations for spins and orbitals observed by NMR and ESR,
respectively.
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