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The archetypal two-impurity Kondo problem in a serially coupled double quantum dot is investigated in
the presence of a thermal bias θ. The slave-boson formulation is employed to obtain the nonlinear thermal
and thermoelectrical responses. When the Kondo correlations prevail over the antiferromagnetic coupling J
between dot spins, we demonstrate that the setup shows negative differential thermal conductance regions
behaving as a thermal diode. In addition, we report a sign reversal of the thermoelectric current IðθÞ
controlled by t=Γ (t and Γ denote the interdot tunnel and reservoir-dot tunnel couplings, respectively) and θ.
All these features are attributed to the fact that at large θ both QðθÞ (heat current) and IðθÞ are suppressed
regardless of the value of t=Γ because the double dot decouples at high thermal biases. Finally, for a finite J,
we investigate how the Kondo-to-antiferromagnetic crossover is altered by θ.
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Introduction.—The richness of the single-impurity
Anderson model has been nicely exhibited in singly
occupied quantum dots (QDs) attached to electronic
reservoirs, in which the Kondo effect is its most prominent
feature [1–3]. Such artificial systems allow us an unprec-
edented benefit to investigate out-of-equilibrium many-
body effects with the additional intriguing possibility of
tuning the parameters controlling its physics [4–7]. The
Kondo effect is built from the antiferromagnetic (AFM)
correlations between the delocalized electrons at the
reservoirs and the localized spin in the QD [8]. It is
reflected in the differential conductance as a peak of
height 2e2=h [9] and width ≈kBTK at zero applied voltage
called the zero bias anomaly (kB ¼ 1 is the Boltzmann
constant and TK corresponds to the Kondo temperature).
Importantly, the recent experimental boost on quantum
transport through correlated quantum systems has opened a
new arena: the out-of-equilibrium Kondo physics in more
intricate nanostructures such as artificial coupled Kondo
systems [10–15]. The paradigmatic two-impurity Kondo
system (2IKS) [16–22] possesses a quantum phase tran-
sition (QPT) in which the critical point is a two-channel
Kondo fixed point [23–26] recently observed in QDs
[27,28]. Such a QPT is, indeed, a consequence of the
competition between the Kondo effect and the spin-to-spin
interaction, the latter attributed to the Ruderman-Kittel-
Kasuya-Yosida interaction [29,30], which couples two
localized spins through its interaction with the delocalized
electrons. Therefore, for an antiferromagnetic exchange
coupling J > 0 the spins exist in a singlet state [31–34]. In
a Kondo dominant regime TK ≫ J, each localized spin
exhibits a Kondo singularity, whereas for J ≫ TK the spins
are locked into a singlet state with suppressed Kondo
correlations. In the context of artificial Kondo molecules,

the antiferromagnetic interaction is generated via a super-
exchange mechanism with J ≈ 4t2=U, with t the interdot
tunneling coupling and U the interdot Coulomb repulsion
strength. Now, the connection between both reservoirs
transforms the QPT into a crossover [31–33,35–39].
Different theoretical techniques, like numerical renormal-
ization group [34,40–42] and others [32,33,43], have been
applied to a deeper understanding of the 2IKS; most of
them are applicable at equilibrium and only a few are
focused on the nonequilibrium configuration [29,35,
37–39,44,45]. Experimentally, the behavior of the 2IKS
has been probed in tunnel-coupled QDs [10–15].
However, out-of-equilibrium physics in the 2IKS has

been analyzed only with electric fields. A much less
investigated situation is when a thermal gradient θ ¼ TL −
TR [TL (TR) is the temperature of the left (right) reservoir]
is applied. Strong thermoelectrical response has been
demonstrated to occur in confined nanostructures such
as QDs [46–51]. These systems allow us to partially
convert electricity into heat, and vice versa, with large
Seebeck coefficients [52]. In particular, the case of a
thermally biased QD in the Kondo regime has been
investigated recently, mostly in the linear regime [53]. In
Ref. [54] it was shown that Kondo correlations are
destroyed with θ, but more slowly than with the applied
voltage Vsd. Additionally, it was found that the thermo-
electric current IðθÞ exhibits a nontrivial zero in the Kondo
regime at a critical thermal bias θc ≈ TK . Consequently, the
sign of IðθÞ can be controlled externally by varying θ.
A sign reversal of IðθÞ is a very unusual phenomenon that
has been recently reported to happen in single quantum
dots in the Coulomb blockade regime [55] and in tubular
nanowires in the presence of a magnetic field as its sign
control parameter [56].
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In this work, we focus on the nonlinear response of a
thermally biased 2IKS (see Fig. 1). Remarkably, with
TK ≫ J, we find that a thermal bias perturbs our serial
double quantum dot (DQD) differently depending on the
ratio between the dot-lead (Γ) and interdot tunneling (t)
couplings. We report situations where the DQD setup
operates as a thermal diode [57] exhibiting a region of
negative differential thermal conductance for sufficiently
large temperature biases. Thermal diodes are of great
importance for their potential applications as coolers [58],
energy harvesters [59], or thermal memory storage [60],
and in the emergent field of coherent caloritronics [61].
In contrast, when J > TK , the dependence of TK for each

dot on θ has a strong impact on the Kondo-to-antiferro-
magnetic crossover.
Model Hamiltonian and theoretical approach.—Our

system illustrated in Fig. 1 consists of a tunnel-coupled
DQD where each dot is connected to an electronic reservoir
acting as an artificial Kondo molecule. The Hamiltonian
describing this system reads

H ¼ HC þHD þHT: ð1Þ

HC ¼ P
α;k;σεαkc

†
αkσcαkσ describes the fermionic reservoirs.

c†αkσ (cαkσ) creates (annihilates) an electron of energy εαkwith
wave number k and spin σ ¼ f↑;↓g in the reservoir
α ¼ fL;Rg. The dot Hamiltonian is expressed in the form
HD ¼ P

α;σεαd
†
ασdασ þUnα↑nα↓ þ

P
σtd

†
LσdRσ þ H:c: d†ασ

(dασ) creates (annihilates) an electron of energy εα with
spin σ in the dot α and nασ ¼ d†ασdασ denotes the dot
occupation operator. Electrons hop between dots with a
tunnel amplitude t. Two electrons located in the same
dot feel the on-site Coulomb interaction U. HT ¼P

αkσVαc
†
αkσdασ þ H:c: connects each dot to its respective

reservoir with tunneling amplitude Vα.
To observe thermal and thermoelectric effects, we raise

the temperature of the left reservoir by an amount of θ > 0
with respect to the background temperature such that TL ¼
Tb þ θ and TR ¼ Tb. With this configuration, our analysis
proceeds in two directions: (i) the Kondo dominant case
with a negligible J ≈ 0 and (ii) the crossover from Kondo-
to-AFM phases for J ≠ 0.

We consider the infinite-U limit, thereby each dot is
singly occupied for εα < 0. Then, at very low temperatures,
we can adopt a Fermi liquid description [62]. In such a case
the Hamiltonian is reformulated employing the slave-boson
representation. The dot operators become d†ασ ¼ f†ασbα.
The bosonic operator bα annihilates an empty state, while
the auxiliary fermion operator f†ασ creates the singly
occupied state with spin σ at the dot α. The single
occupancy constraint b†αbα þ

P
σf

†
ασfασ ¼ 1 is enforced

by introducing Lagrange multipliers Λα. We apply a 1=N
expansion, with N as the level degeneration of the dot
angular momentum, here N ¼ 2, and keep the leading
order. Then, the bosonic operators are replaced by their
mean-field (MF) values hbαi →

ffiffiffiffi
N

p
b̃α, neglecting the

fluctuations around its expectation value. The MF approach
has been successfully applied to a number of Kondo-related
problems [21,31,33,62], such as double-dot systems driven
out of equilibrium [29,38,44,45]. We obtain a set of MF
equations, i.e., the boson equation of motion and the
Lagrange condition. By solving these equations, we deter-
mine the Kondo impurity parameters (Λα, b̃α) that renorm-
alize the system parameters as ε̃α ¼ εα þ Λα and
Γ̃α ¼ Γαjb̃αj2 with Γα ¼ πραjVαj2 and ρα as the density
of states of the reservoir α considered constant in a
bandwidth D. Additionally, Γ̃L=R and ε̃L=R represent the
effective Kondo temperatures TKL=R and the Kondo reso-
nance positions within this approach. The details of the
calculation of ε̃α and Γ̃α can be found in the Supplemental
Material [63].
The electric and heat current flowing out of the left

reservoir (I ¼ IL and Q ¼ QL) are obtained by applying
the commutator with H, giving the result

I ¼ e
h

Z
dω½fLðωÞ − fRðωÞ�T ðωÞ; ð2Þ

Q ¼ 1

h

Z
dω½fLðωÞ − fRðωÞ�ðω − μαÞT ðωÞ; ð3Þ

where e > 0. The Fermi-Dirac distribution of the reservoir
α with the chemical potential μα is denoted as fαðωÞ ¼ 1=
f1þ exp ½ðω − μαÞ=kBTα�g. The analytical expressions for
the transmission T ðωÞ and derivations for charge and heat
flows are given in the Supplemental Material [63]. We
emphasize that such currents have a nontrivial dependence
on θ through the MF parameters.
Results (I): Thermally driven Kondo regime.—At this

stage we focus on a negligible J ≈ 0 value. Hereafter, we
consider a symmetric double-dot system: ε0 ≡ εL ¼ εR ¼
−3.5Γ and ΓL ¼ ΓR ¼ Γ. We set D ¼ 100Γ with a back-
ground temperature Tb ¼ 10−5Γ, thereby, Tb ≪ TK0, where
TK0 ¼ D exp ½πε0=Γ� denotes the Kondo temperature for a
single dot [8], where TK0 ¼ 0.0016Γ for the chosen bare
system parameters. For a serial DQD, the characteristic

FIG. 1. Schematic of a tunnel-coupled DQD system. Each
reservoir is coupled to its respective dot with the tunnel
hybridization ΓL=R and the dots are coupled with a tunnel
amplitude t. The left reservoir is heated; meanwhile, the right
reservoir remains at the background temperature Tb giving rise to
a temperature gradient θ in the system.
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Kondo temperature is normalized by the tunneling amplitude
accordingly toTK¼TK0exp½ðt=ΓÞtan−1ðt=ΓÞ�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðt=ΓÞ2

p
[33]. First, we explore in Fig. 2 the behavior of the MF
parameters Γ̃α and ε̃α when a thermal gradient θ is applied.
We distinguish three different scenarios, namely, (i) the
weakly coupling regime t=Γ < 1, (ii) the intermediate
t=Γ ∼ 1, and (iii) the strong coupling regime t=Γ > 1.
Then, when t=Γ < 1 [see Fig. 2(a)] we observe that Γ̃LðθÞ
and Γ̃RðθÞ behave very differently with θ. Here, Γ̃L (hot
reservoir) decreases rapidly as θ increases, whereas Γ̃R
remains almost unaffected by θ. Each dot develops an
independent Kondo resonance with its own reservoir that
yields a much lower Kondo temperature for the hot reservoir
that decreases its value as long as θ augments. However,
when t=Γ ≈ 1, both Γ̃L and Γ̃R are affected as shown in
Fig. 2(b) due to the moderate coupling between the Kondo
resonances. Eventually, for t=Γ > 1, the DQD behaves
effectively as a Kondo coherentmolecule exhibiting bonding
and antibonding Kondo states. Here, Γ̃L and Γ̃R are similar
when θ is tuned. However, at large θ, Kondo correlations
disappear in the hotter side. In such a case, the right dot
decouples completely from the left dot and Γ̃R approaches
TK0, as indicated by the dashed line in Fig. 2(c).
Consequently, for very large θ values the transport through
the double dot is blocked even though Kondo correlations in
the right (cold) dot take place.
All previous features determine the characteristic behav-

iors of the heat QðθÞ and thermoelectric current IðθÞ.
Figure 3(a) displays QðθÞ for different interdot tunnel
couplings indicating the regimes (i) t ¼ 0.25Γ, (ii) t ¼ Γ,
and (iii) t ¼ 1.5Γ, 2.5Γ. QðθÞ is always positive as
expected. We observe that QðθÞ presents a maximum at
a certain critical θc. Then, a region of diminishing heat
current appears for θ > θc exhibiting a negative differential

thermal conductance: the basis of a thermal diode. Here, the
DQD system allows the heat flow to occur in one direction
preferentially [57].
In the linear regime (θ → 0) the heat flow increases

linearly with θ according to the Fourier law: Q ≈ K0θ, with
K0 the linear thermal conductance which, at low temper-
atures, follows K0 ≈ k0T ðεFÞ, where k0 is the thermal
conductance quantum [see Fig. 3(c)], whereas for θ → ∞
the heat flow is suppressed since Kondo correlations at the
hot reservoir are efficiently suppressed. More explicitly,
this result is observed in the nonlinear thermal conductance
KðθÞ ¼ dQ=dθ in Fig, 3(b), where by increasing θ it makes
KðθÞ change sign indicating that the DQD setup decouples
due to a much smaller renormalized tunneling amplitude
t̃ ¼ tb̃Lb̃R. As a consequence, we claim that the
Wiedemann-Franz law is fulfilled as long as the system
behaves as a Fermi liquid (θ < TK).
The thermoelectric transport of the system is character-

ized by the thermocurrent IðθÞ depicted in Fig. 4(a). In
contrast to the heat current, IðθÞ shows distinctive
differences depending on t=Γ. For t=Γ < 1, IðθÞ is always
positive, the transmission has a single peak centered at the
positive frequency side; i.e., the thermocurrent has an
electron-dominant character [see Fig. 4(b)] [54,55].
Increasing θ makes the peak of T ðωÞ narrower, and
eventually at larger θ such shrinking yields a suppressed
IðθÞ.When t=Γ > 1, the transmission exhibits a double peak
structure due to the formation of coherent bonding and
antibonding states. The transition from a single-peak trans-
mission when t=Γ < 1 to a double-peak transmission for
t=Γ > 1 induces a sign change in IðθÞ for some range of
θ values [see Fig. 4(c)]. The explanation for such sign
reversal in IðθÞ is shown in Fig. 4(c), where the double-
dot transmission is plotted for t ¼ 1.5Γ at a small θ value.

(a) (b) (c)

FIG. 2. Γ̃L=R as a function of the thermal bias θ. The left,
middle, and right columns correspond to the weak (t ¼ 0.25Γ),
intermediate (t ¼ Γ), and the strong coupling regimes (t ¼ 2.5Γ),
respectively. The parameters are normalized by the common
Kondo temperature TK (for the definition of TK , see the main
text). Parameters are kB ¼ 1, ΓL ¼ ΓR ¼ Γ, εL ¼ εR ¼ −3.5Γ,
Tb ¼ 10−5Γ, D ¼ 100Γ, μL;R ¼ εF ¼ 0.

(a)
(b)

(c)

FIG. 3. (a) Heat current QðθÞ for different values of the tunnel
coupling t. (b) Differential thermal conductance KðθÞ ¼ dQ=dθ
for different values of the tunnel coupling t. (c) Linear thermal
conductance K0ðtÞ normalized with the thermal conductance
quantum k0 as a function of the tunnel amplitude t. This result is
equivalent to the transmission function at the Fermi level,
K0ðtÞ ¼ k0T ðω ¼ 0; tÞ. Same parameters as in Fig. 2.
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Notice that the transmission has more weight located at the
negative frequency side in T ðωÞ causing a holelike flow
which gives negative IðθÞ. By increasing θ ≈ TK , theweight
on the positive frequency side in T ðωÞ starts to contribute,
adding an electronlike flow to IðθÞ. Therefore, there is a
temperature θ� where the hole and electron contributions to
IðθÞ compensate each other, yielding a vanishing thermo-
electric current. Eventually, when θ > θ�, the weights on
positive frequencies in T ðωÞ dominate and therefore
IðθÞ > 0. Eventually at large θ, IðθÞ vanishes again since
Kondo correlations on the hot dot are fully suppressed and
hence left and right reservoirs become uncoupled.
Results (II): Thermally drivenKondo-to-antiferromagnetic

crossover.—In contrast to the results explained above,
when TK becomes smaller, the presence of J is unavoid-
able, inducing the Kondo-to-AFM transition. Therefore, we
now include a non-negligible AFM interaction J > 0
between localized spins SL=R by adding the following term
to the general Hamiltonian HJ ¼ 1=4JSL · SR [31].
When J exceeds a critical value Jc, the localized dot

spins favor the formation of an AFM spin singlet state that
blocks the charge transport. In serially coupled dots, several
works have reported a crossover from the Kondo regime
towards an AFM single state between the dot spins
[11,14,15]. Such an AFM singlet state is manifested in
the nonlinear conductance G exhibiting a splitting of value
δ ≈ 2J [29,33,45]. Additionally, the critical value Jc has
been demonstrated to take the value [29]

Jc=TKR ≈
4

π

�
1þ TKL

TKR

�
; ð4Þ

where TKR > TKL. Previously, we showed that a thermal
bias alters dramatically the behavior of the Kondo scales

TKL (≈Γ̃L) and TKR (≈Γ̃R). Therefore, according to Eq. (4),
θ affects the value of Jc. In Fig. 5, we depict Jc=TKR when
θ is tuned for different t=Γ. The overall tendency is a
transition from Jc=TKR ≈ 8=π towards Jc=TKR ≈ 4=π at
large θ due to the suppression of the Kondo correlations in
the hot dot TKL ≈ 0. The inset of Fig. 5 displays the
behavior of the critical value Jc=TKR for a fixed θ ¼
3.25TK as a function of t=Γ. Jc=TKR increases with t=Γ
because Kondo correlations (for low or moderate θ values)
are reinforced when the interdot tunneling coupling t=Γ
increases. Consequently, a stronger AFM coupling is
needed to suppress Kondo correlations.
Summary.—Summarizing, the two-impurity Kondo

system driven by a thermal bias θ has been examined.
When Kondo correlations are dominant (J ¼ 0), θ has a
strong influence on the Kondo scales and consequently
on the transport properties of the Kondo-based setups.
Our findings indicate that for sufficiently large θ the
Kondo correlations are destroyed for the dot coupled
to the hot reservoir regardless of the interdot strength
coupling. Since the interdot coupling is renormalized
by the Kondo correlations for both dots, the DQD setup
gets decoupled leading to suppressed electrical and
heat flows. For non-neglibible antiferromagnetic spin
exchange coupling, we report the influence of θ on the
Kondo-to-AFM crossover. For a finite J, we find that
such a crossover takes place around a critical value that
for a small θ takes the value Jc=TKR ¼ 8=π, whereas for
a large θ, Jc reaches the value of ≈4=π. This result is due
to the quenching Kondo correlations on the hot reservoir
when θ augments. Finally, we highlight that all our
observations might be experimentally tested due to the
huge progress on thermoelectrical transport through
nanostructures.

(a) (b)

(c)

FIG. 4. (a) Thermoelectric current IðθÞ for different values of
the interdot tunnel coupling t. For clarity, all curves are rescaled
with the factors: 10−6, 10−5, 5 × 10−5, and 10−4 for t ¼ 0.25Γ, Γ,
1.5Γ, and t ¼ 2.5Γ, respectively. Panels (b) and (c) show trans-
mission probabilities T ðωÞ for t=Γ < 1 and t=Γ > 1, respec-
tively. Two different θ values are considered. The dashed line in
(c) indicates the position of local minimum showing that the
transmission is not symmetric. Same parameters as in Fig. 2.

FIG. 5. Jc=kBTKR for several values of the interdot tunnel
coupling t=Γ. Inset: Jc=kBTKR as a function of t=Γ at θ ¼ 3.1TK .
Same parameters as in Fig. 2.
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[61] M. J. Martínez-Pérez, P. Solinas, and F. Giazotto, Coherent
caloritronics in Josephson-based nanocircuits, J. Low Temp.
Phys. 175, 813 (2014).

[62] P. Coleman, Mixed valence as an almost broken symmetry,
Phys. Rev. B 35, 5072 (1987).

[63] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.096801 for details.

PHYSICAL REVIEW LETTERS 121, 096801 (2018)

096801-6

https://doi.org/10.1103/PhysRevB.65.241304
https://doi.org/10.1103/PhysRevB.87.115102
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/PhysRevB.79.233105
https://doi.org/10.1103/PhysRevB.79.233105
https://doi.org/10.1103/PhysRevB.76.241305
https://doi.org/10.1103/PhysRevB.76.241305
https://doi.org/10.1103/PhysRevB.73.235337
https://doi.org/10.1103/PhysRevLett.85.1946
https://doi.org/10.1103/PhysRevLett.85.1946
https://doi.org/10.1103/PhysRevLett.89.136802
https://doi.org/10.1103/PhysRevLett.89.136802
https://doi.org/10.1103/PhysRevLett.65.1052
https://doi.org/10.1103/PhysRevB.55.R10197
https://doi.org/10.1088/1367-2630/15/10/105011
https://doi.org/10.1103/PhysRevB.61.16801
https://doi.org/10.1103/PhysRevB.61.16801
https://doi.org/10.1103/PhysRevB.86.165106
https://doi.org/10.1103/PhysRevB.86.165106
https://doi.org/10.1088/1367-2630/15/12/123010
https://doi.org/10.1088/1367-2630/15/12/123010
https://doi.org/10.1088/0953-8984/19/8/086214
https://doi.org/10.1088/0953-8984/19/8/086214
https://doi.org/10.1103/PhysRevB.96.085416
https://doi.org/10.1103/PhysRevB.90.115313
https://doi.org/10.1103/PhysRevLett.119.036804
https://doi.org/10.1103/PhysRevLett.93.184301
https://doi.org/10.1103/RevModPhys.78.217
https://doi.org/10.1103/RevModPhys.78.217
https://doi.org/10.1103/RevModPhys.83.131
https://doi.org/10.1103/RevModPhys.83.131
https://doi.org/10.1103/PhysRevLett.101.267203
https://doi.org/10.1007/s10909-014-1132-6
https://doi.org/10.1007/s10909-014-1132-6
https://doi.org/10.1103/PhysRevB.35.5072
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096801

