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Growing crystals form a cavity when placed against a wall. The birth of the cavity is observed both by
optical microscopy of sodium chlorate crystals (NaClO3) growing in the vicinity of a glass surface, and in
simulations with a thin film model. The cavity appears when growth cannot be maintained in the center of
the contact region due to an insufficient supply of growth units through the liquid film between the crystal
and the wall. We obtain a nonequilibrium morphology diagram characterizing the conditions under which a
cavity appears. Cavity formation is a generic phenomenon at the origin of the formation of growth rims
observed in many experiments, and is a source of complexity for the morphology of growing crystals in
natural environments. Our results also provide restrictions for the conditions under which compact crystals
can grow in confinement.
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In natural environments, confinement commonly con-
strains the growth of crystals [1]. Constrained growth may
cause large forces such as in salt weathering [2–5], in the
opening of veins in Earth’s crust [6,7], or in frost heave
[8,9]. In biomineralization—the process by which living
organisms grow minerals, confinement also plays a key role
in controlling the shape and phase of nanocrystals [10,11],
and combines with the chemical environment [12] to
govern microstructure formation in, e.g., bones or dentine.
Beyond its relevance for natural environments, motion
produced by confined growth can be used in technological
applications such as nanomotors [13]. However, while the
morphology of freely growing crystals has been inves-
tigated for decades [14,15], much less is known about
crystal morphological evolution in confinement. Here, we
show that the simplest confinement, i.e., the vicinity of a
flat impermeable substrate, leads to the formation of a
cavity (or pit) in the growing crystal. The cavity forms due
to insufficient material supply in the center of the contact.
After their formation, cavities can expand up to the edge of
the contact, leading to growth rims that have been observed
in force of crystallization experiments since the beginning
of the 20th century [16–19].
Cavity formation is observed both using optical micros-

copy of sodium chlorate crystals (NaClO3) growing in the
vicinity of a glass surface, and in simulations based on a
thin film model. The birth of the cavity is characterized by a
nonequilibrium morphology diagram describing the bal-
ance between growth rate and mass supply. This diagram is
found to be robust with respect to variations in the
properties of the growth mechanism such as anisotropy
or kinetics. Indeed, despite their differences, e.g., with
respect to crystalline anisotropy, both experiments and
simulations collapse on the same diagram. Our results

provide generic conditions for growing compact crystals
without cavities in micro- and nanoconfinement conditions
such as those encountered in Earth’s crust, in biomineral-
ization, or in technological applications.
Experimental methods and observation of the cavity.—In

our experiments, we control the solution supersaturation
while measuring the confined crystal topography. A
NaClO3 seed crystal with a volume of ∼1 mm3 is placed
in a 60 μl chamber filled with a saturated NaClO3 solution,
and is then dissolved to the desired size. The solubility
c0ðTÞ of NaClO3 is strongly temperature dependent
[20–22]. The temperature of the sample chamber and oil
immersion objective is controlled with a long term pre-
cision of 1 mK. By adjusting the temperature T below or
above the equilibrium temperature Teq, to obtain growth or
dissolution, the relative saturation σb¼ðcb−c0ðTÞÞ=c0ðTÞ
can be controlled with an accuracy of 0.1%. The equilibrium
point, cb ¼ c0ðTeqÞ, is identified when the crystal exhibits
roundish edges and neither grows nor dissolves. The high
nucleation barrier of NaClO3 prevents the appearance of
other seed crystals in the chamber that could affect the
concentration of the bulk solution [23]. Additional details
about preparation of seeds and temperature control are
provided in the Supplemental Material [24].
The confined (100) facet of the crystal is observed from

below using reflection interference contrast microscopy
(RICM), which is based on the interference between
reflections from the glass interface and the confined crystal
interface (see Fig. 1). Using a specialized objective, a high
power LED light source and a 16 bit camera this method
allows us to determine the distance ζðrÞ between the crystal
and the glass with nm precision [30]. Because of the
presence of dust grains on the substrate, the distance ζðrÞ
cannot be decreased below a minimum value, which ranges
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from 10 to 80 nm. An atomic force microscope image of
the substrate showing these dust grains is provided in the
Supplemental Material [24]. In order to gain more control
on the gap between the substrate and the crystal we have
also performed experiments with glass beads deposited
on the substrate prior to the seed crystal, which act as
calibrated spacers (see the Supplemental Material [24] for
details). In all measurements, the lateral extent 2L of the
crystal facet facing the substrate is determined by tracking
the edges with a precision of 15 nm. The growth rate
ux ¼ _L of lateral facets shown in Fig. 1(b), which is
nonvanishing only above a critical supersaturation ∼0.1,
is characteristic of growth limited by two-dimensional
nucleation [31]. In rare cases, the saturation dependence
of ux deviated from this characteristic behavior due to
the presence of dislocations. Such cases were discarded,
and all the results reported below therefore correspond to
dislocation-free experiments.
Our main observation is that during growth when the

size 2L exceeds a critical value, which depends on the
average film width h and on the supersaturation σb, a cavity
forms within the contact region. Snapshots of the temporal
evolution slightly above the threshold are shown in
Fig. 1(c). The corresponding surface plots and movie are
respectively shown in Fig. 2(a), and the Supplemental
Material [32]. The appearance of the cavity can be

interpreted as a consequence of a lower growth rate in
the central part of the facet as compared to the parts closer
to the facet edges. Intuitively, this lower growth rate is due
to confinement limiting the diffusive mass supply from the
bulk liquid.
Simulation model and observation of the cavity.—In

parallel, we have performed numerical simulations of a thin
film model describing the dynamics within the contact
region. The model, based on that of Refs. [33,34], describes
growth and dissolution of a crystal, considered as a rigid
body without elastic deformation, coupled to diffusion and
hydrodynamics in the liquid film. We used some additional
simplifying assumptions. First, attachment-detachment
kinetics of ions are fast at the surface of salts such as
NaClO3, and diffusion limited mass transport along the
thin liquid film is decreased by confinement. Hence, we can
safely assume that kinetics are limited by diffusion (see the
Supplemental Material for a discussion [24]). Moreover,
whereas the bulk solution surrounding the crystal is
influenced by solutal buoyancy convection, which origi-
nates from temperature and concentration gradients, such
effects can be excluded in the confined solution below the
crystal. We also neglect the hydrodynamic flow induced by
the density difference between the crystal and the solution
during growth [35], though, we keep the density difference
as the origin of the gravitational force Fz maintaining the
crystal on the substrate. The model is axisymmetric about
the z axis defined in Fig. 1.
Using the small slope limit and the dilute limit [33], we

then obtain two equations accounting for the evolution of
the local thickness ζðr; tÞ of the liquid film where r is the
radial coordinate, and for the growth rate uzðtÞ, which is the
velocity of the crystal along z. The first equation accounts
for local mass balance, the second for global force balance
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where we have defined the viscosity η, diffusion constant
D, molecular volume Ω, numerical concentration cðrÞ, and
solubility c0, Boltzmann constant kB, and temperature T.
The interaction between the substrate and the crystal in
Eq. (1) is described by the potentialUðζÞ. In order to mimic
the experimental conditions where thicknesses smaller than
h are forbidden by dust grains, we consider the repulsive
potential

UðζÞ ¼ Af

�
ζ − h

λ̄h

�
; ð2Þ

FIG. 1. Experimental setup and observation of cavities. (a) A
growing crystal is placed against a glass substrate. The crystal
surface profile is determined with nm accuracy by RICM (see
text). (b) Measured growth rate ux of lateral facets as function of
bulk supersaturation σb. Different symbols correspond to distinct
measurement series. Red line: fit according to the nucleation-
limited growth rate [31]. (c) RICM images showing the formation
of a cavity in the (100) facet during growth. Snapshots just before
the start of cavity formation, 15 min later, and 35 min later.
Supersaturation: σb ¼ 0.093, distance to the glass substrate:
h ¼ 51 nm. (d) Same as (c) for an inclined crystal, supersatu-
ration: σb ¼ 0.21, distance to the glass substrate: 12 (bottom
edge) to 95 nm (top edge).
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where A and λ̄ are constants, and fðxÞ ¼ e−x=x is a
Yukawa-like term. Finally, we have defined the surface
stiffness γ̃ ¼ γð0Þ þ γ00ð0Þ in Eq. (1), where γðθÞ is the
surface free energy and the angle θ is defined in Fig. 1.
In experiments, the crystal surface facing the substrate is a

facet, and surface stiffness is expected to diverge for faceted
orientations while surface tension remains finite [14], lead-
ing to a singular crystal shape. Such singularities cannot
be handled by our continuum model where the crystal
surface exhibits a smooth nonsingular profile. However,
we approach the behavior of a facet using a strongly
anisotropic model with a stiffness γ̃ ¼ 102 J=m2, roughly
103 times larger than the expected surface tension γð0Þ ∼
0.1 J=m2 (see the Supplemental Material [24] for a detailed
discussion). Choosing the other model parameters in a way
which is consistent with the literature and with experiments
(see the Supplemental Material [24]), this assumption on the
stiffness allows one to obtain growth rates and supersatu-
rations comparable to those observed in experiments.
We numerically solved Eqs. 1(a), 1(b) in a circular

simulation box of fixed radius R, with fixed film width
ζðRÞ ¼ ζBC and supersaturation σðRÞ ¼ σBC at the boun-
dary of the integration domain. All simulations were started
with a flat contact region.
Steady-state profiles are reached at long simulation

times. They are reported in Fig. 2(b) for increasing sizes
R of the simulation box. A movie of the related time
evolution is reported in the Supplemental Material [36].
As in the experiments, we find that a cavity forms when the
size of the crystal exceeds a critical value. As shown in
Fig. 2(b), the effective radius L of the contact is smaller
than the total radius R of the simulation box. Despite the
absence of growth-induced expansion of the contact size L
in simulations, good qualitative agreement is obtained with
the experiments. This agreement suggests a quasistatic
behavior, where the growth of the lateral crystal size is slow
enough to have a negligible influence on the diffusion field
in the contact region.

Criterion for cavity formation.—Based on this hypoth-
esis of quasistatic dynamics, the threshold for cavity
formation can be deduced from global mass conservation.
Within the thin film approximation, the concentration does
not depend on the z coordinate, and mass balance for a disc
of radius r and constant thickness h of liquid film centered
in the contact region is obtained from the substitution ζ ¼ h
and ∂tζ ¼ 0 in Eq. 1(a), leading to

πr2Jk ¼ −2πrhJdðrÞ; ð3Þ
where Jk ¼ uz=Ω is the mass flux entering the crystal per
unit facet area, and JdðrÞ ¼ −Dðdc=drÞ denotes the
diffusion flux entering into the liquid volume. The con-
centration is integrated as

cðrÞ ¼ cb −
Jk
4hD

ðL2 − r2Þ; ð4Þ
where cb is the concentration at the edge of the contact
region. The local supersaturation σðrÞ ¼ cðrÞ=c0 − 1
decreases toward the center of the facet. We expect that
growth can be maintained in the central region only if the
supersaturation is positive at r ¼ 0. More precisely, from
Eq. (1b), we infer that since cavity formation requires
the concomitant cancellations of the local curvature
∂rrζ þ ∂rζ=r to form a concave part in the center, and
of the substrate repulsion U0ðζÞ since interactions vanish
when the interface moves away from the substrate, it should
correspond to the cancellation of the supersaturation at
r ¼ 0. This is confirmed by the numerical solution of
Eq. (1) showing that a cavity starts forming approximately
when σð0Þ ¼ 0. This condition for cavity formation can be
rewritten as

uz ≥ 4Ωc0σbD
h
L2

¼ βD; ð5Þ
where β ¼ 4Ωc0σbh=L2, and σb ¼ σðLÞ ¼ cb=c0 − 1.
Simulation morphology diagram.—Simulation results

reported in the ðuz=D; βÞ plane in Fig. 3(b) confirm the

FIG. 2. 3D view of cavity formation at the confined crystal interface. (a) Surface plot of the distance ζðrÞ between crystal interface and
glass substrate from the RICM images reported in Fig. 1(c). (b) Simulation result showing axisymmetric steady states with film width
h ¼ 50 nm, supersaturation σBC ≈ 0.004 and thickness ζBC ¼ 1040 nm at the edge of the simulation box of radius R. The surface plots
represent only the contact region of radius L < R with supersaturation σb ¼ σðLÞ < σBC at their edge. From left to right: R ¼ 60 μm,
L ≈ 20 μm, and σb ≈ 0.0011; R ¼ 65 μm, L ≈ 28 μm, and σb ≈ 0.0014; R ¼ 70 μm, L ≈ 37 μm, and σb ≈ 0.0019.
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prediction of Eq. (5). However, the slope Dβ=uz ≈ 0.61 is
slightly lower than the expected value Dβ=uz ¼ 1. Details
on the methods to determine the transition point, the contact
size L, and supersaturation σb ¼ σðLÞ at the edge of the
contact region are reported in the Supplemental Material
[24]. We have checked that these conclusions are not
affected by the boundary conditions imposed for numerical
integration. Since the quantity β depends on h, the dimen-
sionless range λ̄ of the repulsion potential is kept very small
∼10−2, so that the liquid film thickness in the stable regime
is approximately equal to h in all simulations.
One striking property of the transition line is its robust-

ness with respect to the variation of the physical parameters
that do not enter into Eq. (5). Indeed, as shown in Fig. 3(b),
large variations in gravitational force Fz, and normalized
interaction amplitude A, lead to negligible changes in the
transition line position. Furthermore, increasing or decreas-
ing one of the kinetic constantsD or η by a factor of 10 also
does not affect the transition line.
Experimental morphology diagram.—In experiments,

we have performed growth cycles to explore a range of
supersaturations with a single sample. For each cycle, we
monitored the surface profile ζðrÞ during growth at fixed
supersaturation, and recorded the critical size at which the
cavity forms. As soon as the depth of the cavity exceeded

15 nm, the temperature was increased to attain a saturation
value at which the cavity closes again. Once we obtained
a flat interface, the entire procedure was automatically
repeated with a different growth supersaturation. The
vertical growth rate uz is obtained from the increase of
the depth of the cavity just after its formation. This method
assumes that the growth rate at the bottom of the cavity is
negligible leading to a deepening which is only due to the
growth rate uz of the contact region outside the cavity.
Since the lateral growth rate ux is easier to determine than
uz from the growth of the cavity, we measure ux, and
determine uz from a linear interpolation of the relation
between the two velocities based on a large number of
measurements. The ratio ux=uz is roughly independent of
L, h, and σb, as shown in the Supplemental Material [24].
Our measurements reported in Fig. 3(a) agree with

a linear behavior of the transition line in the ðuz=D; βÞ
plane. Diffusion constants D ¼ 0.093 × 10−9 m2 s−1 or
D ¼ 0.057 × 10−9 m2 s−1, respectively, provide quantita-
tive agreement with the slopes predicted by Eq. (5) or
by simulations in Fig. 3(b). These constants are consistent
with values reported in the literature [37].
Geometrical corrections described in the Supplemental

Material [24] were used to evaluate β for elongated and
inclined crystals in Fig. 3(a). Moreover, for inclined
crystals, the minimum of supersaturation where the cavity
should form is found to be shifted toward the side where
the film is thinner due to the reduced mass transport in
this part. The expression of this shift is calculated in the
Supplemental Material [24]. In Fig. 1(d), the observed ratio
of the distance from the lower edge to the width of the facet
is 0.254� 0.005, in reasonable agreement with the pre-
diction 0.32� 0.05 calculated from the expression given
in the Supplemental Material [24], using the experimentally
measured inclination.
Discussion.—The dependence of uz on physical param-

eters is different in simulations and experiments. For
example, while uz is roughly independent of h in experi-
ments, it is proportional to h in simulations. Despite this
difference, simulations and experiments fall in the same
morphology diagram in the ðuz=D; βÞ plane.
Additional differences between experiments and simula-

tions have been observed. First, the shape of the cavity
is less rounded in experiments, and emerges from a flat
surrounding facet, as seen in Fig. 2(a). This is a consequence
of the difference between crystalline anisotropy in experi-
ments giving rise to facets and to large slope variations, and
our model anisotropy without singular facets and within the
small slope approximation. In order to reproduce the details
of the anisotropy of the experimental shape, one promising
strategy is to describe explicitly the dynamics of atomic
steps, as suggested by previous studies of facet instabilities
during free growth [38,39]. Second, close to the threshold,
random opening and closure of the cavity are observed in
experiments. The results reported above correspond to the

FIG. 3. Nonequilibrium morphology diagram for cavity for-
mation. (a) Transition line in experiments for different crystals.
Results plotted assuming D ¼ 0.0935 × 10−9 m2 s−1 which al-
lows for a perfect correspondence with Eq. (5). (b) Transition line
obtained from simulations. Colored filled dots were obtained
using different values of the repulsion strength ā, viscosity η, or
diffusion D and external force Fz, with respect to the main set of
simulations.

PHYSICAL REVIEW LETTERS 121, 096101 (2018)

096101-4



lower boundary of the stochastic transition regime. Such
fluctuations could be attributed to a nucleationlike process
associated to the competition between thermal fluctua-
tions, and surface tension driven decay of the cavity. Again,
despite these differences, both experiments and simula-
tions collapse on a linear transition line in the ðuz=D; βÞ
plane. The robustness of this linearity can be traced back to
the fact that it depends only on two ingredients: mass
conservation, and diffusion-limited mass transport, as
discussed above in the derivation of Eq. (5).
In conclusion, when a growing crystal is placed in the

vicinity of a flat wall, a cavity can form in the surface of
the crystal facing the wall. The presence of a cavity can be
predicted from the crossing of a linear transition line in the
ðuz=D; βÞ plane. Cavity formation in confinement appears
as an alternative path toward the formation of concave
crystals, beyond well known free growth instabilities
leading, e.g., to dendrites [40] or hopper crystals [38,41].
In later stages of growth the cavity can expand up to the

edges of the contact area, leading to a growth rim, as
observed in force of crystallization experiments [16,17].
Since the birth of the cavity affects the shape and area of the
contact, cavity formation should also influence the force
and interactions between the crystal and its environment.
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[29] J.-N. Aqua, A. Gouyé, A. Ronda, T. Frisch, and I. Berbezier,

Phys. Rev. Lett. 110, 096101 (2013).
[30] L. Limozin and K. Sengupta, Chem. Phys. Chem. 10, 2752

(2009).
[31] F. Abbona and D. Aquilano, in Springer Handbook

of Crystal Growth (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010), p. 53.

[32] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.096101 for movie
showing cavity initiation on the confined NaClO3 interface.

[33] L. Gagliardi and O. Pierre-Louis, Phys. Rev. E 97, 012802
(2018).

[34] L. Gagliardi and O. Pierre-Louis, New J. Phys. 20, 073050
(2018).

[35] W. R. Wilcox, Prog. Cryst. Growth Characterization Mater.
26, 153 (1993).

[36] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.096101 for a 3D
animation of the numerical solution.

[37] A. N. Campbell and B. G. Oliver, Can. J. Chem. 47, 2681
(1969).

[38] A. Chernov, J. Cryst. Growth 24–25, 11 (1974).
[39] H. Lin, P. G. Vekilov, and F. Rosenberger, J. Cryst. Growth

158, 552 (1996).
[40] J. S. Langer, Rev. Mod. Phys. 52, 1 (1980).
[41] I. Sunagawa, J. Cryst. Growth 99, 1156 (1990).

PHYSICAL REVIEW LETTERS 121, 096101 (2018)

096101-5

https://doi.org/10.1088/0953-8984/18/6/R01
https://doi.org/10.1103/PhysRevLett.94.075503
https://doi.org/10.1103/PhysRevLett.94.075503
https://doi.org/10.1038/ncomms5823
https://doi.org/10.1103/PhysRevLett.120.034502
https://doi.org/10.1103/PhysRevLett.120.034502
https://doi.org/10.1130/0091-7613(2001)029%3C0079:CPVCSA%3E2.0.CO;2
https://doi.org/10.1130/G33286.1
https://doi.org/10.1130/G33286.1
https://doi.org/10.1103/PhysRevLett.74.5076
https://doi.org/10.1103/PhysRevLett.87.088501
https://doi.org/10.1103/PhysRevLett.87.088501
https://doi.org/10.1002/chem.201302835
https://doi.org/10.1002/chem.201302835
https://doi.org/10.1021/cm501770r
https://doi.org/10.1021/cm501770r
https://doi.org/10.1074/jbc.M110.183434
https://doi.org/10.1021/nl0510659
https://doi.org/10.1029/JZ064i011p02001
https://doi.org/10.1016/j.jcrysgro.2012.03.019
https://doi.org/10.1021/je00021a016
https://doi.org/10.1021/je00021a016
https://doi.org/10.1016/S0009-2509(98)00040-2
https://doi.org/10.1016/S0009-2509(98)00040-2
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
https://doi.org/10.1016/0022-0248(95)00929-9
https://doi.org/10.1139/v66-135
https://doi.org/10.1139/v66-135
https://doi.org/10.1103/PhysRevB.62.17004
https://doi.org/10.1103/PhysRevLett.110.096101
https://doi.org/10.1002/cphc.200900601
https://doi.org/10.1002/cphc.200900601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
https://doi.org/10.1103/PhysRevE.97.012802
https://doi.org/10.1103/PhysRevE.97.012802
https://doi.org/10.1088/1367-2630/aad454
https://doi.org/10.1088/1367-2630/aad454
https://doi.org/10.1016/0960-8974(93)90014-U
https://doi.org/10.1016/0960-8974(93)90014-U
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.096101
https://doi.org/10.1139/v69-440
https://doi.org/10.1139/v69-440
https://doi.org/10.1016/0022-0248(74)90277-2
https://doi.org/10.1016/0022-0248(95)00426-2
https://doi.org/10.1016/0022-0248(95)00426-2
https://doi.org/10.1103/RevModPhys.52.1
https://doi.org/10.1016/S0022-0248(08)80100-5

