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Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where
the reconnecting magnetic fields were self-generated in the plasma by the Biermann-battery effect. Using
fully kinetic 3D simulations, we show the full evolution of the magnetic fields and plasma in these
experiments, including self-consistent magnetic field generation about the expanding plume. The collision
of the two plasmas drives the formation of a current sheet, where reconnection occurs in a strongly time-
and space-dependent manner, demonstrating a new 3D reconnection mechanism. Specifically, we observe a
fast, vertically localized Biermann-mediated reconnection, an inherently 3D process where the temperature
profile in the current sheet coupled with the out-of-plane ablation density profile conspires to break
inflowing field lines, reconnecting the field downstream. Fast reconnection is sustained by both the
Biermann effect and the traceless electron pressure tensor, where the development of plasmoids appears to
modulate the contribution of the latter. We present a simple and general formulation to consider the
relevance of Biermann-mediated reconnection in general astrophysical scenarios.
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The Biermann-battery effect [1,2] is one of the few
mechanisms known to spontaneously generate magnetic
fields in plasmas. In the context of astrophysics, while
too weak to generate the present-day observed cosmic
magnetic fields, the Biermann-battery effect is widely
regarded as a possible source of the seed magnetic field,
subsequently amplified to observed present-day fields by
protogalactic turbulence [2]. This effect, which is the result
of noncollinearity between density and temperature gra-
dients (ð∂B=∂tÞ ∝ ∇n × ∇T), has been shown in high-
energy-density (HED) plasmas to generate strong magnetic
fields (10–100 T) during intense laser heating [3–10]. In
such experiments [3–5,10], when two plumes are ablated
adjacently, the oppositely polarized fields collide and
undergo magnetic reconnection; this is the universal process
in which the magnetic field threaded through plasma under-
goes a fundamental topological change, often resulting in
violent conversions of field energy into kinetic energy. HED
laser plasmas provide a platform to study magnetic recon-
nection, which is intrinsic to many phenomena throughout
plasma physics [11], from the sawtooth instability in
magnetic fusion confinement devices [12] to solar flares
[13] and disturbances in Earth’s magnetosphere [14].
Recent HED experiments have observed interesting

effects associated with reconnection, including flux anni-
hilation [4,15], stagnation of reconnection [10], and particle

jets [3,7]. Kinetic simulations of HED laser experiments
based on model profiles have provided valuable insight into
reconnection dynamics in this regime, including flux-pileup
near the reconnection layer [16], plasmoid formation [17],
the role of the Nernst effect [18], and particle acceleration by
reconnection [19]. Particle-in-cell simulations have also
modeled Biermann-battery generation in expanding plasmas
[20]. One such study investigated reconnection in electron-
dominated relativistic plasmas driven by short-pulse lasers
[21], but, to date, the full 3D evolution of magnetic
reconnection within HED plasmas in the magnetohydrody-
namic (MHD) regime (L=di ≫ 1, whereL is the system size
and di is the ion skin depth) has not been investigated.
In this Letter, we present the first 3D, end-to-end, fully

kinetic computational study of magnetic reconnection
within a recent HED experiment [6], which captures both
the self-consistent initial field generation by the Biermann
effect and reconnection within the fully 3D geometry of the
system. This is in contrast to previous HED reconnection
simulations where the magnetic fields and plasma profiles
are set in the initial conditions. We present in detail how
reconnection proceeds, including how the development and
ejection of plasmoids modulates the reconnection rate. The
simulations also reveal that the Biermann-battery effect can
play a direct and significant role in 3D magnetic recon-
nection, where a local Te maximum in the current sheet
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coupled with an out-of-plane density gradient conspires to
reconnect flux via ∇n ×∇T, a process we refer to as
“Biermann-mediated reconnection.” We emphasize that
observing this mechanism requires a full 3D simulation,
and it is distinct from previously documented 2D recon-
nection mechanisms, both in the strong guide-field case
involving the electron scalar pressure [22,23] and in
reconnection without a guide field involving the off-
diagonal components of the electron pressure tensor
[16,24]. We introduce a new dimensionless number that
enables the evaluation of the importance of the Biermann
effect in reconnection and demonstrate its application to
laboratory and space plasmas.
For direct comparison, presented simulations are modeled

after a recent reconnection experiment at the Shenguang-II
(SG-II) laser facilities [6], for which we observe general
agreement between the field and plasma evolution in
simulation and experiment. The results of our simulation
have potentially important implications for reconnection and
energy conversion in many 3D reconnection systems. For
example, in galactic dynamo theories where Biermann fields
provide the seed magnetic field, it is implicitly assumed that
fast reconnection occurs somehow to facilitate the breaking
and reconfiguration needed to form large-scale magnetic
fields [2]. Our Letter demonstrates that, in addition to seed
generation, the Biermann effect might also facilitate the
reconnection required for the success of a large-scale
dynamo. Furthermore, this Letter is especially relevant to
systems with large density and temperature gradients, such
as in indirect and direct-drive inertial confinement fusion
experiments [25,26] and reconnection in many astrophysical
scenarios, including in Earth’s magnetosheath [27], the
heliopause [28], and in simulations of turbulent reconnec-
tion, including the highly turbulent reconnection upstream of
high-Mach-number shocks [29].
We use the following formulation of generalized Ohm’s

law in order to quantitatively account for the contributions
to the electric field, which in turn accounts for B-field
evolution via Faraday’s law,

E¼ − v × Bþ j × B
nee

−
∇pe

nee
−
∇ ·Πe

nee
þ Rei

nee
: ð1Þ

Each term on the rhs has a physical interpretation; the
first two terms are the contribution due to ion flow and the
Hall effect. The third term represents the contribution due
to the scalar electron pressure. Via Faraday’s law, this term
contributes to ð∂B=∂tÞ as the Biermann-battery effect,
−ð1=neeÞ∇ne ×∇Te, and is capable of generating or
destroying magnetic flux depending on temperature, den-
sity, and field configurations. The fourth term, the traceless
pressure tensor contribution (where Πe ≡ Pe − peI3) is
well documented to be important in collisionless 2D
reconnection layers [24]. This term includes the effect of
viscosity and contributions from pressure tensor anisotropy,
which is associated with the Weibel instability [30]. Rei is
the collisional momentum transfer between electrons and
ions and via Faraday’s law contributes to ð∂B=∂tÞ as both
resistive diffusion and Nernst advection via the thermal
force. Noting that reconnection is characterized by a finite
out-of-plane E field inside the current sheet, we use Eq. (1)
to quantify the contribution to the reconnection electric
field from the Biermann-battery effect, which requires out-
of-plane variation, and from the traceless pressure tensor
term [24].
Simulation setup.—We use the PSC code [31], a fully

kinetic, explicit particle-in-cell code employing a binary
Coulomb collision operator, to model the reference experi-
ment. Shown in Fig. 1(a), simulations are initiated by heating
electrons with a radial profile Hðx;yÞ∝ exp½−ðx2þy2Þ=R2

h�
within a thin, dense target, producing an expanding plasma
plume. All boundaries are periodic where the heated plume
collides with itself along the inflow dimension (X), which is
much shorter than the outflow (Y) and vertical (Z) dimen-
sions. From the observed simulation ablation profiles, we
measure nab and Tab, the ablation density and temperature
[32], where the heating operator magnitude is tuned to
obtained the desired Tab. We can then define the ablation ion
skin depth, di0 ¼ ðMi=nabZe2μ0Þ1=2, and the sound speed,

FIG. 1. Collision of self-magnetized plume with itself at four times, where two inflow (X) periods are shown. (a) Early time snapshot
detailing setup of simulation; shown are two planar slices of ne [one through the target (z ¼ 0di0) and one through the inflow, vertical
plane (XZ, y ¼ 0di0)], magnetic field lines in yellow, jBj=B0 ¼ 0.05 contour in blue, and Te=Tab ¼ 0.75 contour in red.
(b) Demonstration of Biermann-mediated reconnection at time t ¼ 11.2td. (c),(d) Top down views of later time field evolution
(t ¼ 14.6td and 26.6td, respectively), including plasmoid ejection and current sheet stretching—here the blue contour represents
jBj=B0 ¼ 0.08, and green represents E · j=ðenabTab=tdÞ ¼ 0.01.

PHYSICAL REVIEW LETTERS 121, 095001 (2018)

095001-2



Cs;ab ¼ ðZkbTab=MiÞ1=2. Together these define the ablation
timescale td ¼ di0=Cs;ab and the characteristic magnetic
field B0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0nabkbTab

p
. Normalizing our simulations to

ablation units allows us to match PSC results to physical
values of nab;phys, Tab;phys, di0;phys, and td;phys obtained from a
similar analysis of radiation-hydrodynamic simulations per-
formed with the DRACO code [33]. For reference, nab;phys ¼
3 × 1027 m−3, Tab;phys ¼ 2 keV, Cab;phys ≈ 300 km=s, and
B0;phys ¼ 1300 T. Reference [32] presents the SG-II exper-
imental parameters and the full computational scheme for
modeling heating, ablation, and matching to DRACO simu-
lations. In contrast to Ref. [32], we extend our simulations
from 2D (XZ) to 3D (XYZ), allowing reconnection.
We use a compressed electron-ion mass ratio,

Zme=Mi ¼ 1=64, (Z ¼ 1) and a compressed ratio between
Tab and the electron rest mass energy Tab=mec2 ¼ 0.04.
We compress these values far below the physical ratios
while achieving convergence in our results, provided
Zme=Mi; Tab=mec2 ≪ 1; in analogous 2D simulations,
ratios down to Zme=Mi ¼ 1=400 show convergence with
Zme=Mi ¼ 1=64. A box of 80 × 160 × 480di0ðLx; Ly; LzÞ
is used, with the grid cell spacing Δx < de0, 5λD;ab, where

λD;ab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0kbTab=nabe2

p
. The SG-II heating radius

Rh=di0 ¼ 12 with bubble separation Lx=di0 ¼ 80.
Further parameters include the target width ¼ 2di0, the
target density¼2.5nab, the background density¼0.001nab,
the target and background Te ¼ 0.025 Tab, and 50 second-
order-shaped particles are used per cell at nab. The
collisionality, described by λmfp, the mean free path of
electrons at Tab and nab, is matched to the electron skin
depth de0 to preserve the correct collisional diffusivity of
the magnetic field; λmfp=de0 ¼ 20. While λmfp is resultingly
mismatched on di0 scale, throughout the plume collision
region we recover the correct collisionality regime, i.e.,
λmfp > δrec, where δrec is the current sheet width.
Figures 1 and 2, respectively, show 3D snapshots and 2D

profile slices of the SG-II magnetized plume collision.
Figure 1(a) demonstrates the plume ablation, where the
magnetic field is generated via −ð1=neeÞ∇ne ×∇Te due to
the resulting density and temperature profiles, as demon-
strated in Ref. [32]. By t ¼ 11.2td, seen in Fig. 1(b), the

toroidal fields have collided and begun to reconnect. In
Fig. 1(c), at t ¼ 14.6td, we observe field energy conversion
in the reconnection current sheet between the inflow fields
(E · j > 0.01nabTab=td) and the development of closed-
flux-surface plasmoidlike structures in the outflow. The
associated inflow plane profiles at t ¼ 14.6td of ne, Te, Jz,
and inflow field By are shown in Figs. 2(a)–2(d). From
Figs. 2(c) and 2(d), we find the upstream field at the edge
of the current sheet is compressed to 0.17 B0, a factor of
1.5–2× the nominal generated field of ≈0.1B0. This
observation is in contrast to 2D HED driven reconnection
simulations, which find pileup ratios of 4× the nominal
inflow field [16]. In physical units, the observed com-
pressed field corresponds to 220 T, comparable to the 370 T
estimated in the experiment [7].
Figure 2(e) presents the downstream magnetic field in

the outflow (YZ plane, x ¼ 0di0) at t ¼ 14.6 td. For
z ¼ 25–70 di0, moving in theþy direction from the current
sheet center at y ¼ 0 di0, we find Bx reverses its sign twice,
around y ¼ 25 di0 and y ¼ 45 di0, where the first reversal
corresponds to the center of the upper plasmoid in Fig. 1(c).
Comparing Figs. 1(c) and 1(d), we find that the current
sheet elongates as the plasmoids are ejected. Each plasmoid
travels ∼20 di0 in 12 td, yielding an outflow speed of 1.66
Cs ≈ 500 km=s, in agreement with the experiment, which
observed plasmoids ejected in the outflow at 400�
50 km=s [6]. Discussed below, the creation and ejection
of plasmoids appears to modulate the reconnection, par-
ticularly via the traceless pressure tensor. Biermann-
mediated reconnection appears to be independent of
plasmoid behavior.
Biermann-mediated reconnection.—The profiles shown

in Figs. 1(b) and 2(a)–2(d) demonstrate how Biermann-
mediated reconnection operates. The current sheet (around
x ≈ 0di0; z ≈ 20di0) is relatively heated compared to both
the inflow and outflow, as shown in Figs. 1 and 2(b). This
local Te maximum flips the direction of ∇Te to point
towards the plume collision center throughout the current
sheet. Given ∇n remains directed toward the high-density
target, −ð1=neeÞ∇ne ×∇Te in the current sheet destroys
incoming flux (XZ plane) and generates reconnected flux in
the outflow (YZ plane).
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FIG. 2. (a)–(d) 2D slices along the inflow plane (XZ plane, y ¼ 0di0) of ne, Te, Jz, and By at the SG-II scale at time t ¼ 14.6td, where
the bottom corners correspond to the center of the expanding plume and the dotted black line indicates the current sheet. (e) 2D slice
along the outflow plane (YZ plane, x ¼ 0di0) showing the downstream field Bx.
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In Fig. 3, we quantify the reconnection contribution of
both the Biermann and traceless pressure tensor mecha-
nisms. In 3D reconnection, the out-of-plane electric field Ez
can have an electrostatic contribution in the current sheet
that does not contribute to B-field evolution (i.e., recon-
nection.) Therefore, we extract the electromagnetic (EM)
contribution of each term in Eq. (1) by solving for the
divergenceless component of each rhs term via Fourier
analysis. In Figs. 3(a) and 3(b), the electromagnetic

contributions to Ez;em of the two mechanisms along the
inflow (XZ) plane are presented, demonstrating
ð∇pe=eneÞem contributes significantly to the reconnection
E field in the current sheet (black dotted line) around
z ≈ 16di0, while ð∇ · Πe=eneÞem operates throughout the
vertical current sheet. Figure 3(c) presents the full gener-
alized Ohm’s law for Ez at z ¼ 16di0, showing strong ion
inflow (green), Hall inflow (cyan), dissipation at x ¼ 0di0
in the current sheet due to both ∇pe=ene (black) and ∇ ·
Πe=ene (magenta), and agreement between Ez and the sum
of the rhs of Eq. (1) (blue and red, respectively). Figure 3(d)
clarifies the dissipation terms, presenting both the full and
EM contributions to Eq. (1). Comparing ∇pe=ene (black)
vs ð∇pe=eneÞz;em (brown), we find the scalar pressure term
has both significant electromagnetic and electrostatic com-
ponents in the current sheet with ð∇pe=eneÞz;em ¼ 0.03
B0Cs. For the traceless pressure tensor term, we find
∇·Πe=ene≈ð∇·Πe=eneÞz;em¼0.055 B0Cs. We define the
local Alfvénic reconnection rate normalization as B�

upV�
A;up,

where the maximum upstream field B�
up ¼ 0.17 B0

and the Alfvén velocity V�
A ¼ B�

up=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0Min�i

p ¼ 0.85Cs,
where n�i ¼0.04nab is the current sheet ion density at z ¼
16di0. Noting B�

upV�
A;up ¼ 0.145B0Cs, we find the recon-

nection rate due to Biermann, RBiermann¼ð∇pe=eneÞz;em=
B�
upV�

A;up≈0.2 and Rtraceless ¼ ð∇ · Πe=eneÞz;em=B�
upV�

A;up≈
0.38. The local reconnection rate is the sum of these rates,
yielding R ≈ 0.58, which is the maximum rate observed in
the simulation.
Figures 3(e) and 3(f) show the outflow (YZ plane) B-

field generation (ð∂Bx=∂tÞ) due to −ð1=neeÞ∇ne ×∇Te,
Biermann, and −∇ × ð∇ · Πe=eneÞ, the traceless pressure
tensor, where the latter appears to be associated with
plasmoid formation from z ¼ 25–80 di0. Figure 3(g) quan-
tifies the full picture: the rate of total flux reconnection,
calculated by ð∇pe=eneÞem and ð∇ ·Πe=eneÞem, vertically
integrated along the current sheet (brown and purple,
respectively) vs time, as well as the downstream flux
generation rate by Biermann, as in Fig. 3(e), and the traceless
pressure tensor, as in Fig. 3(f), integrated over the outflow
(respectively shown in black and magenta.) For the traceless
pressure tensor, the reconnected flux (purple) matches the
flux creation downstream (magenta) at both scales, and we
find global reconnection to speed up around t ¼ 14td,
corresponding to the plasmoid creation. Subsequently
(t ¼ 17–30td), reconnection progressively slows as the
plasmoids are ejected and the current sheet lengthens. For
the Biermann term, we find reconnection (brown) does not
match downstream flux generation (black), indicating that
some downstream flux generation by the Biermann effect
occurs separately from the reconnection. Biermann recon-
nection does not slow with current sheet elongation and
ultimately constitutes ≈25% of the total reconnection,
whereas the Biermann term generates roughly 50% of the
downstream flux.
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FIG. 3. (a),(b) 2D slice along the inflow plane of ð∇pe=eneÞz;em
and ð∇ · Πe=eneÞz;em, respectively; dotted black line indicates the
current sheet, (By=B0 ¼ 0). (c) Full out-of-plane generalized
Ohm’s law along the inflow at y ¼ 0di0; z ¼ 16di0: Ez in blue,
sum of rhs of Eq. (1) in red, v × B in green, −j × B=nee in cyan,
∇pe=ene in black, ∇ · Πe=ene in magenta, and Rei=ene in
orange. (d) Shows the same cut of full z component of
∇pe=ene and ∇ · Πe=ene (black and magenta, respectively) vs
EM component of each term (brown and purple, respectively).
(e),(f) The downstream flux creation in the outflow (YZ,
x ¼ 0di0) by −ð1=neeÞ∇ne ×∇Te and −∇ × ð∇ · Πe=eneÞ, re-
spectively. The quantities in (a)–(f) are calculated based on 2 di0
averaging of plasma parameters in all three dimensions. (g) The
rate of flux reconnection, _Ψ ¼ R

C Ez;emdz, where C is along the
current sheet, by ð∇pe=eneÞz;em (brown) and ð∇ · Πe=eneÞz;em
(purple). (g) Also shows _Ψ ¼ R ðLz=2Þ

0

R ðLy=2Þ
0 ð∂Bx=∂tÞdydz,

the rate of flux creation in the outflow by Biermann,
−ð1=neeÞ∇ne × ∇Te (black), and the traceless pressure tensor
term, −∇ × ð∇ · Πe=eneÞ (magenta.)
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Biermann reconnection rate.—To evaluate when the
Biermann-battery effect should be considered in a recon-
nection scenario, we compare estimates of RBiermann against
the typical fast reconnection value of 0.1BupVA [34]. The
Biermann mechanism requires a heated reconnection layer
Te with an associated inflow scale length LT , coupled with
a significant out-of-plane ne variation with scale length Ln.
Considering −ð1=neeÞ∇ne × ∇Te operating over a recon-
nection layer width of δrec, the rate of flux destruction in the
reconnection layer, normalized to B�

upV�
A, can be approxi-

mated as

RBiermann ≈
δrecTe

eLTLnB�
upV�

A
¼ βe

2

δrecdi;rec
LTLn

; ð2Þ

where in the second equality we have substituted
βe ¼ neTe=ðB�2

up=2μ0Þ, and di;rec as the local ion inertial
length, demonstrating RBiermann scales with reconnection
layer βe. In our simulations for t ¼ 14td, z ¼ 16di0, given
Te;rec ≈ Tab, βe ≈ 2.8, LT ≈ 10di0, δrec ≈ di;rec ¼ 5di0,
Ln ≈ 14di0, we find RBiermann ≈ 0.25, in agreement with
results above.
From Ref. [27], we use RBiermann to evaluate the

possibility of Biermann-mediated reconnection within
the turbulent magnetosheath. Referring to the current sheet
parameters presented therein, we find Bin ≈ 20 nT,
VA ≈ 200 km=s, Te;rec ≈ 100 eV, LT ≈ 180 km, and
δrec ≈ 90 km, and we estimate Ln ≈ 240 km given asso-
ciated density measurements. These estimates yield
RBiermann ≈ 0.05, comparable to the observed normalized
reconnection rate of 0.1, demonstrating that Biermann
reconnection may play a significant role in this system [27].
The simulations presented in this Letter go beyond

previous studies by capturing the full end-to-end 3D
evolution, from self-consistent field generation to recon-
nection, of a recent MHD-scale HED reconnection
experiment. We find general agreement in B-field gen-
eration and plasmoid dynamics between simulation and
experiment, and detailed analysis of our results reveals
that the Biermann-battery effect plays a direct role in the
3D fast magnetic reconnection. In addition to in HED
regimes, we show using the dimensionless parameter
RBiermann that Biermann-mediated reconnection may play
a role in turbulent 3D reconnection within the magneto-
sheath, which may be observed by the Magnetospheric
Multiscale Mission. We further propose that this effect
could be important in heliosheath and in mediating
the initial fast reconnection necessary for large-scale
dynamo.
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