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We study how a suspended liquid film is deformed by an external flow en route to forming a bubble
through experiments and a model. We identify a family of nonminimal but stable equilibrium shapes for
flow speeds up to a critical value beyond which the film inflates unstably, and the model accounts for the
observed nonlinear deformations and forces. A saddle-node or fold bifurcation in the solution diagram
suggests that bubble formation at high speeds results from the loss of equilibrium and at low speeds from
the loss of stability for overly inflated shapes.
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Soap films and bubbles are fascinating from many
perspectives, not the least being the physics and mathe-
matics of their shapes. Dipping a wire frame in soapy water
yields a thin film that, due to surface tension, forms what
can be idealized as a surface of minimal area [1–3]. Its
shape is dictated by the Young-Laplace equation, which
relates the pressure difference across an interface to its
mean curvature [3,4]. The equality of pressures across an
open film implies an equilibrium shape whose curvature is
everywhere zero, and identifying such minimal surfaces
consistent with a boundary has been a classic problem since
first studied by Lagrange and Plateau [5–7]. Similarly, a
spherical bubble is a closed surface that minimizes the area
for a given volume. How a bubble is first formed involves
the necking down and pinching off of a film. This event
may be triggered, e.g., by separating two supports bridged
by a liquid or film, as studied by Maxwell [8]. Recent work
has focused on the collapse dynamics of fluid necks in the
approach to pinch off [9–12] and on related topological
transitions in films [13,14].
Our more common experience of making bubbles by

blowing on a film is less studied and involves unique
complexities. This event has been visualized in recent
studies [15,16], and the competition of dynamic and
Laplace pressures explains the critical flow speed needed
to form bubbles [17]. Still unresolved is the flow-induced
reshaping of a film, which even in equilibrium involves
nonlinear deformations, incompressible flows into and
around the film, and flow separation that forms a wake.
These effects arise in other natural and industrial contexts,
such as the ballooning and breakup of falling raindrops
[18,19], water wave generation by wind [20], and the
production of foams, emulsions, and sprays [21,22]. The
mutual influence of interface shape and flow is a feature
shared with many fluid-structure interactions [23,24],
whose study often benefits from clean settings for a
comparison of experiment and theory.

Here we consider the bubble-blowing problem in which
a film suspended across a ring is deformed by the uniform
flow of an exterior fluid. Recalling Plateau’s use of
immiscible liquid-liquid systems [5], we study oil films
in flowing water, a system that offers advantages over soap
film in air by mitigating the effect of gravity, eliminating
evaporation, and permitting precise flow control, condi-
tioning, and visualization. We also numerically construct
2D equilibria of a film distended by an inviscid but
separated flow, with stable shapes qualitatively matching
those seen in experiments and unstable shapes offering
insight into how a bubble is blown.
Experiments.—We exploit a serendipitous discovery that

some common oils can form large and long-lived films
within water. By passing a wire loop through a layer of
olive oil and into water below, one forms films that last for
minutes before rupturing due to thinning by draining of the
buoyant oil [25]. We employ olive oil as the interior fluid of
density ρi ¼ 0.91 g=cm3 immersed in the exterior fluid of
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FIG. 1. Experiments. (a) Apparatus for studying the shape of,
and flow around, an oil film in flowing water. (b) Schematic.
(c) Measured profiles of stable shapes for speeds U up to U�, at
which the film ruptures. (d) Flow field near U=U� ¼ 1 for a ring
of radius R ¼ 2 cm.
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water, ρe ¼ 1.00 g=cm3; their coefficient of surface tension
is γ ¼ 17� 1 dyn/cm, consistent with previous measure-
ments [26]. The existence of stable films larger than the
capillary length,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ=ðρe − ρiÞg
p ¼ 0.4 cm, suggests the

presence of surfactants in the oil, perhaps residuals from
processing [27]. To study the response to flow, we devise an
apparatus that sits atop a water tunnel and allows for the
repeatable formation of films on wire rings of radius
R ¼ 1–3 cm. As shown in Figs. 1(a) and 1(b), the broad-
side of the ring faces the uniform oncoming flow of
far-field speed U ¼ 1–10 cm=s that can be varied and
measured. The external flow is dominated by inertia at
these high Reynolds numbers: Re ¼ ρeUR=μe ∼ 103,
where μe ¼ 1 cP is the viscosity of water. The flow-film
interaction involves hydrodynamic and surface tension
pressures, whose ratio is the Weber number We ∝
ρeU2R=γ ∼ 1, a scaled version of which will serve as
the control parameter for this study.
When a film is placed within a flow of moderate speed, it

is deformed from planar and settles to a dome- or para-
chutelike shape. The film then seems to be in stable
equilibrium: It persists for minutes and recovers its shape
after impulsive perturbations to the support or the flow
speed. Such shapes exist up to a critical flow speed U�,
beyond which the film inflates unstably and ruptures (see
Supplemental movie [28]). In Fig. 1(c), we show measured
profiles for a ring of radius R ¼ 2.0 cm for several values
of U up to U� ¼ 6.9 cm=s; 15 trials are shown at each of
seven speeds selected from a set of 16 speeds. The film is
nearly planar at low speeds and deforms into a hollow
hemispherelike cavity as U → U�. However, the response
is nonlinear in U, with the strongest changes occurring in
the immediate lead-up to rupture. Additional analysis of the
profile shapes is presented as Supplemental Material [28].
Avisualization study reveals the character of the external

flow. The photograph in Fig. 1(d) shows flow path lines
[29] as revealed by microparticles illuminated by a planar
laser sheet shone near the equator of a highly deformed
film. Visual tracing of the incoming flow shows that only
fluid very near the midline enters the cavity, where it
abruptly slows down, as indicated by the short path lines.
This internal flow slowly reverses course, following the
inner contour of the film before abruptly speeding up and
exiting near the support, where it separates from the surface
to leave a large wake downstream.
Model.—To gain insight into the general features seen in

experiments, we formulate a film-flow interaction model in
a 2D setting, for which separated-flow models are well
developed [30]. Flow separation is indeed a key ingredient,
as purely inviscid and attached flow generates no pressure
difference (akin to d’Alembert’s paradox [29]) and, thus, no
film deformation. We consider a 2D exterior flow that is
inviscid, incompressible, and irrotational and, hence, may
be represented by a velocity potential in the complex plane.
Separation is accounted for by Levi-Civita’s free-streamline

theory formulation [24,30,31], which uses conformal
mapping [32] to solve for the potential as well as the path
of the free or separation streamlines that shed tangentially
from the pinning points and enclose a wake. Following
previous studies [23,24,33,34], the wake flow is not expli-
citly modeled, but rather the wake pressure is assumed
uniform, consistent with experimental measurements of the
back pressure on bodies at high Re [35]. The film is viewed
as a 1D curve pinned to two points separated by a (vertical)
distance 2R and immersed within the exterior fluid of
density ρe ¼ ρ. The tension coefficient is γ, and the far-field
flow is horizontal with speed U. The film is assumed static,
and its equilibrium shape arises from the Young-Laplace
law, which prescribes a local balance of differential hydro-
dynamic pressure and the surface tension pressure asso-
ciated with curvature.
We highlight key steps of the model formulation, and

supporting details are given in Supplemental Material [28].
Up-down symmetry permits focus on the half-space prob-
lem, and the film profile is given by the tangent angle θðσÞ,
where the parameter σ ∈ ½0; π=2� traverses the film. The
local flow velocity u along the film has a direction given by
θ to ensure no penetration, and previous work [24] shows
that the tangential speed juj satisfies

juj ¼ eτðσÞ; where τ ¼ H½θ� ð1Þ
andH is the Hilbert transform. Crucially, this indicates that
the flow speed along the film can be computed from the
shape alone. A second flow-shape relationship is furnished
by combining the Young-Laplace and Bernoulli laws. The
former relates the local pressure difference across an
interface to its mean curvature, which for a zero-pressure
wake and a film (two interfaces) yieldsΔp ¼ p ¼ 2γκ. The
latter relates the pressure and speed in the exterior flow:
pþ 1

2
ρjuj2 ¼ 1

2
ρU2. Combining to eliminate p yields the

dimensionless curvature

κR¼ Rdθ=ds¼ η½1− ðjuj=UÞ2�; η¼ ρU2R=4γ; ð2Þ

where s is the arc length and η is akin to the Weber number.
Recasting the above relationship in integral form yields

θðσÞ ¼ −
π

2
þ Kη

Z

π=2

σ
sinh½τðσ0Þ� sin 2σ0dσ0; ð3Þ

where the constant K is determined by the pinning
condition at σ ¼ 0. Solving this equation numerically by
a Broyden method yields the equilibrium shape θðσÞ as a
function of the dimensionless parameter η. The hydro-
dynamic force on the film is then given by an integral of
pressure, and the entire 2D velocity and pressure fields can
also be reconstructed.
We find that solutions exist only for η ≤ η� ≈ 1.0015,

which we associate with rupture. Selected profile shapes
are shown in Fig. 2(a) at equally spaced η=η� ∈ ½0; 1�. In
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Fig. 2(b), we show the profile curvature κ scaled by its
maximal value κ0 ¼ κðs ¼ 0Þ ¼ η=R at the stagnation
point and plotted versus the scaled arc length, where
s ¼ 0, 1 denote the stagnation and separation points,
respectively (see the inset). For each forcing, the curvature
drops from its peak at stagnation to a value of zero at
separation. For low η=η� this drop is gradual, but as
η=η� → 1 an ever greater portion of the interface takes
on a value near κ0, and the shapes thus more closely
resemble circular arcs.
In Figs. 2(c) and 2(d), selected streamlines (black curves)

and the dimensionless pressure coefficient CP ¼
2p=ρU2 ¼ 1 − ðjuj=UÞ2 (color map) are compared for
weak and strong forcing. The presence of the interface
slows the oncoming flow, leading to higher pressures (red)
in front, but the strongly deformed film of η=η� ¼ 1 has a

particularly large stagnated region inside the cavity where
the pressure is more uniformly high. The streamlines show
that a thin filament of incoming fluid spreads upon entering
the cavity, dropping in speed (as required by continuity or
mass conservation) and thus increasing in pressure (by
Bernoulli’s law). In essence, the stagnation point has spread
into a broad region that encompasses much of the interface.
These results indicate that the approach to rupture is
marked by a tendency towards uniform pressure difference
across the interface and, by the Young-Laplace law, uni-
form curvature.
Shape and force response.—The 3D film in the experi-

ments differs from the 2D model in that both principal
curvatures of the Young-Laplace law are nonzero:
Δp ¼ 2γðκ1 þ κ2Þ. Assuming axisymmetry, this leads to
κ1 ¼ κ2 ¼ η=2R at stagnation and κ1 ¼ −κ2 at separation,
and generally one expects different shape solutions in 3D
and 2D [28]. A comparison of the model and experiment,
however, reveals some common trends. The model indi-
cates that 2D film rupture is associated with a critical η�
very near unity, and experiments on several ring sizes
reveal a somewhat higher η� ¼ ρU�2R=4γ ¼ 1.41� 0.03.
In Fig. 3, we characterize the shape response to increasing
η, normalized by the appropriate η� for 2D and 3D. The plot
in Fig. 3(a) shows the maximal deformation as measured
(colored points) and computed (black curve), with both
showing that the response is nonlinear even in η ∼U2. A
second parameter pertains to the extension of the film, as
quantified by the surface area S in 3D and the total arc
length L in 2D [Fig. 3(b)]. These quantities, when
multiplied by γ, determine the surface energies stored in
3D and 2D interfaces, respectively [3,4]. The transition
from flat (disk or line segment) at η=η� ¼ 0 to a hollow
(hemispherical or semicircular) cavity at η=η� ¼ 1 yields
the expected limits of S=R2 ¼ π, 2π and L=R ¼ 2, π. The
response is again nonlinear, with most extension occurring
in the immediate approach to η=η� ¼ 1.

FIG. 2. Free-streamline theory model. (a) Equilibrium solutions
at equally spaced η ¼ ρU2R=4γ. (b) Profile curvature for the
same solutions. (c),(d) Streamlines (black curves) and pressure
coefficient CP (color map) for η=η� ¼ 0.25 and 1. The wake
(white) and far field have CP ¼ 0.
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FIG. 3. Shape characterization. (a) Maximal deformation of the film versus normalized Weber number η=η� in experiments (colored
dots) and the model (black curve). (b) Film surface area S (experiments, left axis) and arc length L (model, right axis). (c) Contact angle
ϕc of a film with support, with stable (solid curve) and unstable (dashed curve) branches from the model. The inset plot reveals a 1=2
power typical of a fold bifurcation, with ϕ�

c being the critical contact angle at rupture. Error bars for each experimental point represent
standard deviations over 15 trials.
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The contact angle ϕc of the film with the support, as
defined in Fig. 3(c), also steeply increases en route to
rupture at η=η� ¼ 1 and approaches ϕ�

c ≈ 90° in experi-
ments. The model reveals a second branch of solutions that
can be accessed by decreasing η=η� near this point. These
interfaces have ϕc > 90° and are overinflated into super-
semicircular arcs. Superhemispherical shapes are never
observed in experiments, suggesting that this upper branch
represents unstable equilibria. This solution structure also
indicates that overinflation is associated with a critical point
in a saddle-node or fold bifurcation that occurs in the
parameter η=η�. To quantify this behavior, we consider a
log-scaled plot of 1 − ϕc=ϕ�

c versus 1 − η=η� [Fig. 3(c),
inset], which reveals a power-law approach to the critical
point, here ð1 − η=η�Þ → 0. The observed power near 1=2
for both experiments and the model is typical of a saddle-
node bifurcation [36]. Further analysis of the solutions can
be found in Supplemental Material [28], including an
argument supporting the stability of the lower branch
and instability of the upper.
The contact angle also relates to the total hydrodynamic

force exerted on the film. Integration of the pressure, which
is proportional locally to the curvature, yields a formula for
the force on a 3D axisymmetric film [28]: F ¼ 4πRγ sinϕc.
The 2D analogue is a force per unit length of F ¼ 4γ sinϕc.
Each case reveals a maximal force F� (of 4πRγ in 3D and
4γ in 2D) that can be supported, which occurs for ϕ�

c ¼ 90°.
From this perspective, overinflation occurs because the
surface tension is unable to resist the imposed forces. The
formula also provides a means for inferring the total force
(here a drag) from the experimentally measured contact
angle, and these data are shown as colored points in
Fig. 4(a). The force extracted from the model (black curve)
shows a similar trend, with no significant change in
behavior as η=η� → 1, unlike the shape parameters in
Fig. 3.

Close inspection of the force data reveals subtle non-
linearities, which correspond to deviations from the U2

scaling expected for bodies of fixed shape in fast flows
[29]. Indeed, the effect of shape is highlighted by the force
coefficient CF ¼ 2F=ρeU2A, where A ¼ πR2 is the frontal
area presented to the flow, which removes the expected
scaling with the speed and size. This 3D coefficient and its
2D analogue of F=ρU2R for the model are shown in
Fig. 4(b). Both increase with η=η�, indicating an “anti-
streamlining” behavior in which drag grows more strongly
than U2 as increasingly draggy parachutelike shapes are
generated. The extremes of η=η� ¼ 0, 1 also correspond
well with known values of CF ≈ 1.2 for a planar disk [37]
(0.88 for a plate in the free-streamline theory [30]) and
1.4–1.5 for a hollow hemisphere [38]. A signature of the
higher drag for greater η=η� may also be seen in the wider
wake in Fig. 2(d) as compared to Fig. 2(c).
The shape and force characterizations can be combined

by assessing the force-displacement or stress-strain rela-
tionship, plotted as the dimensionless force F=F� versus
deformation d=R in Fig. 4(c). The film is Hookean for
small forces, but thereafter the strain softens, yielding ever
more in response to incrementally increased forcing.
Discussion.—This work reveals equilibrium shapes of

flow-forced interfaces, which, unlike the area-minimizing
surfaces formed by films and bubbles under hydrostatic
conditions, have nonzero and nonuniform curvature. A
model that solves for such shapes in 2D by locally
balancing the Laplace and hydrodynamic pressures on a
film in an inviscid but separated flow reproduces qualitative
features and trends seen in 3D-axisymmetric experiments,
including a nonlinear shape response leading up to rupture.
The model also reveals a branch of unstable equilibria
connected to the stable branch at the critical point of a fold
bifurcation. This solution structure suggests that an
unbounded distension of the film occurs at high speeds
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FIG. 4. Force characterization in experiments (dots) and the model (curve). (a) Total hydrodynamic force normalized by maximal
values of F� ¼ 4πRγ, 4γ for 3D and 2D, respectively. (b) Force coefficients for 3D experiments (left axis) and the 2D model (right axis).
The horizontal dashed line indicates drag coefficient values determined experimentally for a disk [37] and theoretically for a plate [30].
(c) A force-displacement plot shows strain softening in the approach to rupture. Experimental errors in F=F� ¼ sinϕc and
CF ¼ 2 sinϕc=η are propagated from measured variations in ϕc.
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beyond the critical point where no equilibria exist and also
at lower speeds for which overly inflated shapes are
unstable. These insights could be put to use in flow
metrology, such as in designing film-based pressure probes
or tensiometers, and in fluidic applications related to
droplets, vesicles, and emulsions [39,40].
For our everyday experience with soap films, these

findings offer a quasistatic picture of how an initially flat
film is deformed by blowing at increasing speed before
overinflating and forming a bubble. Surface tension
opposes the imposed aerodynamic pressure across the film,
which increasingly softens until the resisting force reaches
its upper limit and the material fails. For the constant and
uniform flow studied here, this failure involves overin-
flation, thinning, and rupture rather than making a water-
filled oil bubble. In contrast, the birth of a soap bubble in air
may result from the cessation of blowing once the film is
overinflated. Indeed, an oil bubble can be generated
underwater by an impulsive motion of the ring [28]. The
form of the oncoming flow (i.e., uniform versus jetlike
[17]) and the densities of two fluids (which impact the
pinching dynamics) are additional factors that may decide
between the ultimate fates of a ruptured film versus a blown
bubble.
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