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Electromagnetic waves propagating in conventional wave-guiding structures are reflected by disconti-
nuities and decay in lossy regions. In this Letter, we drastically modify this typical guided-wave behavior
by combining concepts from non-Hermitian physics and topological photonics. To this aim, we
theoretically study, for the first time, the possibility of realizing an exceptional point between coupled
topological modes in a non-Hermitian nonreciprocal waveguide. Our proposed system is composed of
oppositely biased gyrotropic materials (e.g., biased plasmas or graphene layers) with a balanced
distribution of loss and gain. To study this complex wave-guiding problem, we put forward an exact
analysis based on classical Green’s function theory, and we elucidate the behavior of coupled topological
modes and the nature of their non-Hermitian degeneracies. We find that, by operating near an exceptional
point, we can realize anomalous topological wave propagation with, at the same time, low group velocity,
inherent immunity to backscattering at discontinuities, and immunity to losses. These theoretical findings
may open exciting research directions and stimulate further investigations of non-Hermitian topological
waveguides to realize robust wave propagation in practical scenarios.
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Introduction.—The ability of guiding light and electro-
magnetic waves in desired directions is of fundamental
importance for science and technology, from long-haul
optical fibers, to the possibility of on-chip optical inter-
connects [1], enhanced light-matter interactions at the
micro- and nanoscale [2], as well as in the context of
complex feeding networks for modern radars and 5G
antenna systems [3]. Controlling wave propagation with
more flexibility and robustness may lead to novel appli-
cations and advances in different domains of wave physics
(electromagnetics, acoustics, seismic and elastic waves,
etc.), including for invisibility and stealth technologies,
robust defect- or damage-tolerant wave-guiding and radiat-
ing systems, and wave-based information processing [4].
Wave propagation in conventional wave-guiding struc-

tures is characterized by some typical properties that limit
their behavior and applicability. (i) Conventional wave-
guides support modes that are allowed to propagate in
either directions with equal and opposite wave vectors,
jkþðωÞj ¼ jk−ðωÞj; i.e., they are symmetric upon time
reversal, a consequence of the Lorentz reciprocity theorem
for most media and structures [5]. As a result, any defect
and discontinuity in the waveguide is allowed to excite a
backward-propagating wave. (ii) Typical waveguide modes
exhibit moderately large group velocity ∂ω=∂k, hence,
limited interaction time with matter. Specific dispersion-
engineering strategies are necessary to slow light down [6].
(iii) Waveguide modes decay in lossy regions, which
obviously limits their propagation length. More generally,

it is typically accepted that, in longitudinally homogeneous
waveguides, the amplitude of a guided mode, ∝ je−iωteik·rj,
with respect to the direction of propagation is either a
constant function if the waveguide is closed and lossless or
an exponential function if the waveguide is lossy or gainy.
In this Letter, we theoretically propose a wave-guiding

structure that violates all three points outlined in the
previous paragraph at the same time, based on combining
concepts from non-Hermitian physics and topological
photonics. This may lead to the realization of anomalous
guided-wave propagation exhibiting backscattering
immunity, loss immunity, and low group velocity simulta-
neously. To realize this exciting possibility, we present for
the first time an exact analysis of coupled unidirectional
modes in non-Hermitian topological wave-guiding struc-
tures based on Green’s function theory, which reveals the
presence and nature of an exceptional point (EP) where two
topologically protected modes coalesce. Such a topological
non-Hermitian degeneracy is the key to the anomalous
propagation properties described above.
Topological non-Hermitian wave-guiding.—Our general

discussion is based on a continuum model of a photonic
topological insulator with broken time-reversal symmetry
(a Chern-type insulator) [7,8], but our considerations can be
extended to any type of photonic topological materials [9–
11]. In particular, we consider a homogeneous or effective
gyrotropic material, which can be described by permittivity
and permeability tensors: ϵ ¼ ϵ0ðϵtIt þ ϵaẑ ẑþiϵgẑ × IÞ,
μ ¼ μ0I, where It ¼ I − ẑ ẑ (I is the unit tensor), with εg
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being the magnitude of the gyration pseudovector.
A continuous gyrotropic material can be realized, e.g.,
by a plasma magnetically biased along a given direction
(in our case, the z axis) with frequency-dispersive permit-
tivity elements having a certain plasma frequency ωp

and cyclotron frequency ωc [12,13]. It has been known
since at least the 1960s that, when a gyrotropic material is
interfaced with a different medium, under certain condi-
tions a unidirectional backscattering-immune surface mode
emerges [25]. In recent years, the nature and origin of this
mode has been related to the nontrivial topological proper-
ties of the gyrotropic material [26–29]. In particular, for the
case of a magnetized plasma, the gap Chern number is
equal to unity [27]; therefore, at the interface with a
topologically trivial material, exactly one topologically
protected one-way edge state emerges.
In order to study a configuration with coupled topologi-

cal modes, we then consider a layered wave-guiding
structure as in Fig. 1(a), composed of a topologically
trivial isotropic layer of thickness h and permittivity ϵr
sandwiched between two gyrotropic media with permittiv-
ity tensors ϵi, i ¼ 1, 2, which we name TNT (topological
nontopological topological) waveguide. The two gyro-
tropic media, e.g., magnetized plasmas, are oppositely
biased in order to have unidirectional transverse-magnetic
surface waves propagating in the same direction, as shown
in Fig. 1(b). The two surface waves are topologically
protected and can couple if the two interfaces are suffi-
ciently close [30,31].
The exact Green’s function of the structure can be

expressed as a Fourier integral with respect to the transverse
momentum kx [13]. In the central region of the TNT
waveguide, assuming the frequency of operation lies within

the band gap of the biased plasmas, this integral can be
evaluated as a sum of residue terms corresponding to the
unidirectional guided modes of the waveguide, as follows:

Hzðx; yÞ ¼ 2πi
X
m

wsppðkmx;ωÞeikmxx; ð1Þ

where wsppðkx;ωÞ ¼ Nðkx;ωÞ=∂kxDðkx;ωÞ is the complex
amplitude of the mode, and the functions N and D are
defined in Ref. [13]. kmx is the mth root (mth guided-wave
pole) of the dispersion equation of the systemDðkx;ωÞ ¼ 0
for a given set of parameters ðω; h;ωpi;ωciÞ. If the system
is closed (Hermitian) with no decaying channels (intrinsic
loss or radiation), the modes of the waveguide are orthogo-
nal [32], whereas, if the system is open, two (or more)
modes may perfectly coalesce and become linearly depen-
dent at an EP [33–37].
To study the non-Hermitian topological case, we intro-

duce loss and gain into the gyrotropic layers of the TNT
waveguide. Mathematically, this can be obtained by modi-
fying the frequency-dependent elements of the permittivity
tensors as ϵ1;jðωþ iδ;ωp;ωcÞ and ϵ2;jðωþ iδ0;ωp;ωcÞ,
where j ¼ t, a, g. By choosing δ ¼ −δ0, we realize a
balanced (parity-time-symmetric) configuration. The tra-
jectory of the guided-wave poles in the complex wave
number plane for this wave-guiding configuration is shown
in Fig. 2(a), as the level of loss and gain is increased. When
δ ¼ −δ0 ¼ 0, we have two poles on the real axis with
ImðkxÞ ¼ 0 corresponding to the Hermitian case. Because
of the nonreciprocal nature of the structure, there are no
symmetric poles on the negative side of the real axis. Then,
as we increase the level of loss and gain, the two poles
move closer to each other until, for δ ¼ −δ0 ¼ δEP ¼
0.02173ωp, the poles collide and merge at kx ¼
0.738ωp=c0 (red dot in the figure). Different from most
previous works on non-Hermitian photonics, our exact
analysis based on Green’s function theory and continuum
material models allows us to rigorously verify that this
point of the parameter space is indeed an EP between
topological modes. A necessary condition is that two first-
order roots of the dispersion equation coalesce to form a
second-order root, which implies that the dispersion equa-
tion at an EP should satisfy

Dðkx;EP;ωEPÞ ¼
∂Dðkx;EP;ωEPÞ

∂kx ¼ 0; ð2Þ

where kx;EP and ωEP are the wave number and angular
frequency at which the degeneracy emerges. However, the
conditions in Eq. (2) guarantee nothing more than the
existence of a double root, whereas an EP should also
satisfy the additional condition

∂Dðkx;EP;ωEPÞ
∂ω

∂2Dðkx;EP;ωEPÞ
∂k2x ≠ 0: ð3Þ

FIG. 1. (a) Topological wave-guiding structure composed of
two oppositely biased gyrotropic media separated by an isotropic
layer (Jm indicates a current source). (b) Example of magnetic
field distribution (time snapshot) propagating in a lossless
(Hermitian) topological waveguide as in (a), excited by a dipolar
source (black arrow). The magnetic field is normalized to its
maximum value. Two unidirectional surface waves propagate
along the interfaces and couple through the isotropic layer. For
this example, we assumed ωp;1 ¼ ωp;2 ¼ 0.9ω0, ϵr ¼ −1, and
ωc;1 ¼ −ωc;2 ¼ 0.28ω0, where ω0 is the source frequency. The
width of the isotropic layer is 0.55λ0, where λ0 is the free-space
wavelength at ω0. Throughout the Letter, we have purposely
normalized all parameters in the figures by wavelength and
plasma frequency; our designs can, therefore, be scaled to any
size and frequency range of interest.
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Indeed, only if Eq. (3) is satisfied, then the second-order
root becomes a branch point where various branches of the
dispersion function merge [38–40] (and not a saddle point
of the dispersion surface). Numerical tests applied to our
specific case verify that our dispersion function near the red
point in Fig. 2(a) with ωEP ¼ ωp=0.904 satisfies conditions
(2) and (3), fully confirming the existence of a branch point
where two distinct topological modes coalesce. Moreover,
by expanding a generic dispersion equation Dðkx;ωÞ ¼ 0
in a power series near kEP and ωEP, it is easy to show
that conditions (2) and (3) are satisfied if the local structure
of the dispersion equation has the form Dðkx;ωÞ ¼
aðkx − kEPÞ2 � bðω − ωEPÞ ¼ 0, where a and b are generic
complex numbers. A first-order EP is, therefore, identified
as a square-root branch point of the dispersion function
kxðωÞ [41–43]. Note that in our case, the dispersion
function is not symmetric in kx due to the nonreciprocal
nature of the TNTwaveguide. Such a nonreciprocal square-
root-like structure of the dispersion function has crucial
implications for the propagation properties of the proposed
structure, as discussed in the following.
As we increase the level of loss and gain in the system

above the critical value δEP, the EP breaks into two
complex-conjugate poles [Fig. 2(a)], leading to exponen-
tially decaying (growing) unidirectional modes propagating

along theþx axis. This is a typical behavior for parity-time-
symmetric systems, but with the important difference that,
in our case, the modes involved in this modal (phase)
transition are topologically protected and backscattering
immune.
Topologically protected slow-light modes.—The

dispersion curves of the coupled topological surface modes
are shown in Fig. 2(b), where the loss and gain level is set at
the critical value δEP, clearly demonstrating the bifurcation
of the topological surface modes (red lines) and the
emergence of an EP within the band gap of the bulk
modes (blue lines) [44]. For frequencies ω > ωEP, there are
two modes with ImðkxÞ ¼ 0, whereas for ω < ωEP, the
modes depart from the wave number real axis and form two
complex-conjugate modes with equal ReðkxÞ. In the
neighborhood of the EP, the dispersion behavior is locally
determined by kx − kEP ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω − ωEP

p
. This relation directly

implies that the dispersion curves flatten out before
merging, such that ∂ωkx → ∞; hence, the group velocity
vanishes, vg → 0. Figure 2(c) compares the dispersion of
the Hermitian system with no loss or gain and the non-
Hermitian system with equal amounts of loss and gain. This
confirms that a waveguide working near the EP may be
used to slow down and stop light, as recently observed in
Ref. [45]. However, in drastic contrast with any other light-
stopping system proposed so far, in our TNT waveguide,
the slowing down of light is topologically protected and
tunable by changing the bias. These features may suggest
novel functionalities in which the propagation of an
electromagnetic wave can be fully stopped and then
released by varying the parameters of the system, e.g.,
the thickness of the waveguide, or the level of gain or loss,
or the external bias, without losing any energy in unwanted
backscattering, thanks to the waveguide’s topological
properties.
Linearly growing topological modes.—Because of its

nature as a second-order singularity of the Green’s func-
tion, as required by Eq. (2), an EP leads to divergence of
the residue terms wsppðkx;ωÞ ¼ Nðkx;ωÞ=∂kxDðkx;ωÞ in
Eq. (1) associated with the two topological modes on the
verge of merging. As a result, the field intensity tends to
grow larger and larger as we operate closer to the EP. While
no realistic structure would be able to exactly operate at the
EP (any unavoidable asymmetry in the gain or loss
distribution would move the EP off the real axis), it is
relevant to study the evolution of the unidirectional fields as
we approach the degeneracy. Figure 3 shows the magnetic
field distribution in the TNT waveguide calculated exactly
based on our Green’s function formulation for a dipolar
source at x ¼ 0 at a frequency near the EP. The interference
of the two excited topological waveguide modes forms
unidirectional “wave packets,” which become longer in
length and larger in intensity as we get closer to the EP
[Figs. 3(a)–3(c)]. In particular, as we approach the fre-
quency of the degeneracy and the difference in wave

FIG. 2. (a) Evolution of the guided-wave poles in the complex
wave number plane for the topological waveguide in Fig. 1, as a
function of the level of loss and gain in the system (with
ωp=ω0 ¼ 0.904, ωc=ω0 ¼ 0.287, and h ¼ 0.35λ0). Black dots
indicate the roots of the dispersion equation. (b) Dispersion
curves of the bulk modes (blue) and topological surface modes
(red) for a TNT waveguide with ωp=ωc ¼ 3.16, δ ¼ −δ0 ¼ δEP,
ωp, h ¼ 0.63πc=ωp, and ϵr ¼ −1. (c) Comparison between the
dispersion curves of the topological surface modes in a Hermitian
system (dashed green) and a non-Hermitian system (blue).
(d) Similar to (a) but varying the isotropic spacer thickness (with
δ ¼ −δ0 ¼ δEP).
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number between the modes gets smaller, Δkx ¼
kx;1 − kx;2 → 0, the residue terms tend to acquire a phase
difference of π [13], and we can write the field distribution
by Taylor-expanding Eq. (1), obtaining

Re½Hz� ≈ WðΔkxÞ
Δkxx
2

sin

�ðkx;1 þ kx;2Þx
2

�
; ð4Þ

which indicates a linearly growing envelope modulated by
a fast oscillating function, consistent with our exact
calculations in Fig. 3(c). Importantly, WðΔkxÞ is a real
number (related to the residue of the two poles) that
becomes larger and larger as we approach the EP [13].
These results are a direct consequence of conditions (2)
and (3) and indicate that, as we approach the EP from
higher frequencies ω → ωþ

EP, two oscillatory modes with
constant amplitude tend to coalesce into a single linearly
growing mode, also known as a Jordan mode [46–49].
Clearly, such a linear growth should not be interpreted as a
form of field amplification experienced by the wave as it
propagates along the structure (the wave feels no net gain,
and the poles associated with the guided modes are
still purely real). Our analysis indeed reveals that the
linear envelope should be interpreted as the result of an
interference pattern between waves with larger and larger
amplitude, and closer and closer wave number, as further
discussed in [13].
Topologically protected loss-immune modal

transitions.—The phase transition through an EP may also
be controlled by varying the thickness of the spacing layer
between the two gyrotropic media. Figure 2(d) shows the
guided-wave pole constellation in the complex wave number
plane for different spacer thicknesses. Considering the same
parameters as in Fig. 2(a) and δ ¼ −δ0 ¼ 0.02173ωp, one
can find an EP for h ¼ 0.35λ0, where λ0 is the free-space
wavelength at the source frequency, which has been set at
ω0 ¼ ωEP ¼ ωp=0.904. When h > 0.35λ0, the poles form a
complex-conjugate pair; at h ¼ 0.35λ0, the two poles collide
on the real axis (EP). Then, as h → 0, the EP unfolds into
two different poles moving away from each other on the real

axis: one tends to þ∞, while the other stops at a finite
positive value.
To study different waveguide configurations correspond-

ing to the different regimes in Fig. 2(d), we performed full-
wave numerical simulations using a commercial software
[50]. In Fig. 4(a), we show the steady-state field distribution
for a TNT waveguide with spacer thickness h ¼ 0 excited
by a point-dipole source. As expected, a unidirectional
surface wave propagates with constant amplitude along the
interface. If we then introduce a step in the wave-guiding
structure, opening an opaque gap of thickness h ¼ 0.35λ0
between the two gyrotropic layers [Fig. 4(b)], the incident

FIG. 3. Magnetic field distribution at the center of the topological waveguide considered in Fig. 2(b) excited by a dipolar source at
x ¼ 0 as its frequency ω0 approaches ωEP ¼ ωp=0.904 (exact Green’s function calculations): (a) ω0=ωEP ¼ 1.047, (b) ω0=ωEP ¼ 1.004
and (c) ω0=ωEP ¼ 1.00004.

FIG. 4. Magnetic field distributions (time snapshots) in topo-
logical non-Hermitian wave-guiding structures excited by a
dipolar source (black arrow). Different configurations are con-
sidered: (a) no gap between the gyrotropic layers (poles on the
real axis); (b) a gap of thickness h ¼ 0.35λ0 is introduced (poles
merge at an EP); (c) same as (b) but with a large defect along the
waveguide; (d) gap of thickness h > 0.35λ0 (complex-conjugate
poles). The material parameters are the same as in Fig. 2(a) with
level of loss and gain δ ¼ −δ0 ¼ δEP ¼ 0.021 73ωp.
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wave directly “jumps” to the EP regime upon encountering
the step, without any reflection because of the topological
nature of the involved modes. Rather remarkably, this
topologically protected modal transition directly transforms
an incident surface wave into a linearly growing (Jordan)
mode operating very close to an EP in the parameter space.
Even more interesting, the wave continues propagating
without any backscattering even in the presence of large
defects [Fig. 4(c)] and grows in amplitude even in the lossy
region, in drastic contrast with any conventional wave-
guiding structure. For comparison, we show in Fig. 4(d)
what happens if the step in the waveguide is larger, bringing
the system into the regime beyond the EP, in which
conventional exponentially decaying and growing waves
are observed.
Conclusion.—In summary, we have theoretically dem-

onstrated, for the first time, a non-Hermitian wave-guiding
structure that exhibits an exceptional point between topo-
logically protected modes. By operating near this degen-
eracy, we can realize unidirectional modes with low group
velocity and inherent immunity to losses and to back-
scattering. This topologically protected behavior would
allow rapid nonadiabatic transitions within the parameter
space Ω ¼ ðω; kx; h; δÞ of the wave-guiding structure,
without any backscattering, as long as the initial and final
states are within the bulk-mode band gap. For example, a
waveguide operating far from the EP, ΩEP, could be excited
by a suitable temporal signal without inducing any insta-
bilities, and then, by changing the parameters in time and/or
space, the waveguide may be brought close to ΩEP to take
advantage of the ultralow values of group velocity in that
regime. These exciting possibilities and the temporal
analysis of topological non-Hermitian waveguides will
be the subject of future works. In addition, while the focus
of this work is on laying out a general theory of topological
wave-guiding near an EP, we expect that our predictions
may be experimentally tested using different realistic
platforms [13].
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