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We establish a localization phase diagram for light in a random three-dimensional (3D) ensemble of
motionless two-level atoms with a threefold degenerate upper level, in a strong static magnetic field.
Localized modes appear in a narrow spectral band when the number density of atoms ρ exceeds a critical
value ρc ≃ 0.1k30, where k0 is the wave number of light in the free space. A critical exponent of the
localization transition taking place upon varying the frequency of light at a constant ρ > ρc is estimated to
be ν ¼ 1.57� 0.07. This classifies the transition as an Anderson localization transition of 3D orthogonal
universality class.
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The search for Anderson localization of light in three-
dimensional (3D) disordered media has been an active
research direction since the mid 1980s when John [1]
and Anderson [2] independently noticed that light could
be localized by strong disorder in a way analogous to
electron localization in disordered solids [3]. It was
rapidly recognized that optical localization in a dielectric
material is difficult to achieve because, on the one hand, of
the way in which the disorder enters the optical wave
equation [the position-dependent dielectric function εðrÞ
of the material multiplies the second-order time derivative
of the electric field] and, on the other hand, of the
relatively low values of ε of available transparent materi-
als at optical frequencies [4]. Unfortunately, even the
materials composed of particles with the largest available
dielectric constants did not allow for an indisputable
observation of disorder-induced light localization in three
dimensions thus far [5–7].
A random spatial arrangement of motionless atoms

represents an alternative to dielectric media for reaching
Anderson localization of light [8,9]. Indeed, the coherent
backscattering (CBS) of light, considered as a precursor of
localization, was observed in cold atomic gases almost
20 years ago [10–12]. However, the vector character of
light and the associated dipole-dipole interactions between
atoms have been predicted to prevent Anderson localization
in atomic systems [13,14]. A static external magnetic field
partially suppresses the interatomic dipole-dipole inter-
actions and can induce localization of light that is quasire-
sonant with a Jg ¼ 0 → ðJe ¼ 1; m ¼ �1Þ transition
(Jg and Je are the total angular momenta of the atomic
ground and excited states, respectively, and m is the
magnetic quantum number of the excited state) [15]. It
is important to stress that the role played here by the
magnetic field is different from that reported in Ref. [12]

where the field enhances the CBS contrast for light
scattered by a cloud of Rb atoms. In the latter case, the
magnetic field lifts the degeneracy of the atomic ground
state (Jg > 0) and thus suppresses Raman scattering and
lengthens the coherence length of light. We consider atoms
with a nondegenerate ground state (Jg ¼ 0) and no Raman
scattering. The magnetic field can have only a negative
impact on such interference effects as CBS because the
contrast of the latter is already maximum in the absence of
the field. Therefore, understanding of Anderson localiza-
tion in our system cannot be achieved with far-field
interference arguments and requires dealing with near-field
effects, such as the dipole-dipole interactions.
Although the presence of localized modes in the atomic

system subjected to an external magnetic field has been
already established in Ref. [15], the transition between
extended and localized regimes has not been studied yet.
This transition takes place in a dense medium that is
made strongly anisotropic by the magnetic field, and in the
presence of near-field couplings between atoms separated
by less than a wavelength in distance. Questions thus arise
concerning the nature of this transition: Towhich extent can
it be considered a genuine, disorder-induced Anderson
transition? What is its universality class? Does the
anisotropy of the atomic medium in a strong magnetic
field play any role? It is the purpose of this Letter to provide
exhaustive answers to these questions and thereby motivate
the experimental work on Anderson localization of light by
cold atoms.
An ensemble of N identical two-level atoms (resonance

frequency ω0, Jg ¼ 0 for the ground state, Je ¼ 1 for the
excited states) at positions frjg, j ¼ 1;…; N, subjected to a
constant external magnetic field Bkez and interacting with
a free electromagnetic field, is described by the following
Hamiltonian [16–18]:
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Here we denote the atomic dipole operators by D̂j, the
electric displacement vector by ε0ÊðrÞ, the photon creation
and annihilation operators corresponding to a mode of the
free electromagnetic field having a wave vector k and a
polarization ϵ by â†kϵ and âkϵ, respectively. μB is the Bohr
magneton, and ge is the Landé factor of the excited state. As
discussed previously [15,19], the quasimodes of the atomic
subsystem can be found as eigenvectors of a 3N × 3N
effective Hamiltonian G of the open system of atoms
interacting via the electromagnetic field:
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where k0 ¼ ω0=c, Δ ¼ geμBB=ℏΓ0 is the Zeeman shift
in units of the spontaneous decay rate Γ0, dejmgj ¼
hJemjD̂jjJg0i, and rjn ¼ rj − rn. The complex eigenvalues
Λn of the matrix G yield eigenfrequencies ωn ¼ ω0 −
ðΓ0=2ÞReΛn and decay rates Γn=2 ¼ ðΓ0=2ÞImΛn of
quasimodes. From here on, we consider atoms that are
randomly distributed in a ball of radius R and volume V
with an average density ρ ¼ N=V.
In a strong magnetic field, the eigenvalues Λn split in

three groups corresponding to transitions between the
ground state and one of the three Zeeman sublevels
(m ¼ 0, �1), which now have different frequencies ωm ¼
ω0 þmΓ0Δ [15]. Each group occupies a roughly circular
area of radius b0 ∼ R=l0 on the complex plane [20,21].
Here l0 ∼ k20=ρ is the on-resonance scattering mean-free
path computed in the independent-scattering approxi-
mation (ISA) and b0 is the on-resonance optical thickness.
If the distance between eigenvalue groups on the complex
plane 2Δ is much larger than 2b0, each group can be found
independently by diagonalizing an N × N matrix GðmÞ. For
m ¼ �1, we find [21]

Gð�1Þ
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where PðxÞ ¼ 1 − 1=xþ 1=x2 and QðxÞ ¼ −1þ 3=x −
3=x2. Note that Eq. (3) still contains divergent near-field
terms ∝ 1=r3jn associated with dipole-dipole interactions
between atoms, but their magnitude is partially suppressed
with respect to the case of B ¼ 0 [13]. The effective
anisotropy of the atomic medium in a strong magnetic field,
which is not obvious from Eq. (2), now becomes evident
because Eq. (3) contains an explicit dependence on the
angle θjn between rjn and B. A comparison of eigen-
values of the matrices (2) and (3) and a discussion of the
condition of validity Δ ≫ b0 of Eq. (3) can be found in the
Supplemental Material [21].
We will use Eq. (3) to study the localization transition for

light that is quasiresonant with the transition between the
ground state and one of the excited states corresponding to
m ¼ �1 (there is no localization transition form ¼ 0 [15]).
To identify the critical points (mobility edges), we use the
approach developed in Ref. [28] for scalar waves. In brief,
at a fixed (and sufficiently high) density ρ and for a set of
different atom numbers N, we compute the eigenvalues Λn
of the matrix (3) for an ensemble of random atomic
configurations frjg and then estimate the probability
density pðln g;ReΛ; NÞ of the logarithm of the Thouless
conductance g ¼ ImΛn=hReΛn − ReΛn−1i, where the angu-
lar brackets denote ensemble averaging. The small-g part of
pðln g;ReΛ; NÞ becomes independent of N at the critical
points ReΛc. Instead of working with pðln g;ReΛ; NÞ, it is
more convenient to analyze its low-rank (q ≤ 0.05) percen-

tiles ln gq defined by q ¼ R ln gq
−∞ pðln g;ReΛ; NÞdðln gÞ.

Figure 1(a) shows the third percentile (q ¼ 0.03) as a
function of ReΛ for different N. The crossing points of
lines corresponding to different N provide approximate
positions of mobility edges ReΛc shown by vertical dashed
lines.
The finite-size scaling analysis of the localization tran-

sition consists in fitting the numerical data for ln gq near a
critical point by polynomials [28,29]:

ln gq ¼
Xn1
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Xn2

j2¼0

aj1j2u1ðwÞj1u2ðwÞj2ðk0RÞj1=νþj2y; ð4Þ
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j¼0
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wherew ¼ ðReΛ − ReΛcÞ=ReΛc, ν is a critical exponent of
the localization transition, and y < 0 is an irrelevant
exponent accounting for deviations from the single-
parameter scaling. m1 ¼ 1, n1 ¼ 2, m2 ¼ n2 ¼ 1 in
Eqs. (4) and (5) are the minimum values that yield fits
of acceptable quality and, at the same time, give consistent
values of best-fit ReΛc and ν for all q from 0.001 to 0.05.
An example of fit is shown in Fig. 1(b) whereas Fig. 2
shows the best-fit values of the mobility edge, correspond-
ing to ReΛc þ 2mΔ ≃ −1 in Fig. 1(a), and of the critical
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exponent ν as functions of the rank q of the considered
percentile for ρ=k30 ¼ 0.2. The analysis of the second
mobility edge [ReΛc þ 2mΔ ≃ −2.4 in Fig. 1(a)] is com-
plicated by a stronger noise in the numerical data and does
not yield reliable estimations of ν with an acceptable
precision.
The best estimate of the critical exponent hνi ¼ 1.57�

0.07 obtained by averaging results obtained for all q ¼
0.001–0.05 [see Fig. 2(b)], is consistent with the value
expected for the Anderson transition of the 3D orthogonal
universality class, typical for spinless time-reversal (TR)
invariant systems [29,30]. The Hamiltonian (1) is formally
invariant under TR of the whole system “light þ
atomsþ the magnet creating the magnetic field B”
(remember that B changes sign upon time reversal) [31].
However, for a constant B that we consider, the subsystem
“lightþ atoms” is not TR invariant and one might expect
the localization transition to belong to the unitary univer-
sality class and have a different critical exponent [30,32].
To resolve this apparent contradiction, let us consider the
transfer of an excitation from an atom n to a distant atom j
(see Sec. I of Supplemental Material [21] for details).

The transfer is operated by photons of different helicities

ϵ ¼ �1 with probability amplitudes AðϵÞ
jn . It is not TR

invariant because the transfer of an excitation from the atom
j back to the atom n by a photon with the same helicity

have a different probability amplitude: AðϵÞ
nj ≠ AðϵÞ

jn .
However, this exchange of photons have an additional

symmetry imposing AðϵÞ
nj ¼ Að−ϵÞ

jn . In other words, the
photons of positive (negative) helicity play the same role
in the excitation transfer from one atom to another as the
photons of negative (positive) helicity do for the transfer in
the opposite direction. As a result, the exchange of
excitations between atoms become TR invariant, and the
localization transition in the ensemble of atoms belongs to
the orthogonal universality class [33].
The anisotropy induced in the atomic medium by the

external magnetic field may play a role in determining the
mobility edges [34–36], but apparently does not modify
the universality class of the localization transition, in
agreement with both previous theoretical results for the
anisotropic Anderson model [36] and experiments in cold-
atom systems [37].
The analysis performed above for a single atomic density

ρ=k30 ¼ 0.2 can be repeated for other densities as well.
The calculation of ν is very computer-time consuming but

FIG. 2. Best-fit values of the mobility edge ReΛc (a) and of the
critical exponent ν (b) as functions of the rank q of the analyzed
percentile ln gq. Fits were performed for the data corresponding to
ρ=k30 ¼ 0.2 and ln gq within �1 of an estimated crossing point of
curves obtained for different N. The dashed solid lines show
average values of ReΛc and ν, respectively, with the values of the
latter printed on the graphs. Gray areas visualize the errors of the
averages.

FIG. 1. (a) Third percentile (q ¼ 0.03) of the logarithm of
Thouless conductance g as a function of frequency at a fixed
number density of atoms ρ=k30 ¼ 0.2 for 10 different sizes of the
atomic cloud: N ¼ 2000, 4000, 6000, 8000, 10 000, 12 000,
14 000, 16 000, 20 000, and 24 000 (symbols with error bars). At
least 2 × 107 eigenvalues were calculated for each N to compute
the percentile. Vertical dashed lines indicate the mobility edges.
(b) Fits (solid lines) of Eqs. (4) and (5) to numerical data for
N ≥ 4000 (symbols with error bars) around one of the mobility
edges. The best-fit values of the mobility edge ReΛc and of the
critical exponent ν are given on the graph.
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the mobility edges can be estimated from the results for a
smaller number of random configurations frjg and only
two different N, see Fig. 3. For 0.1≲ ρ=k30 ≲ 0.12 the
mobility edges are too close to be clearly distinguishable,
and they disappear for ρ=k30 < ρc=k30 ≃ 0.1 The latter value
also follows from polynomial fits in Fig. 3 as a minimum
density at which localized states appear. It is slightly larger
than ρc=k30 ≃ 0.08 identified as the absolute localization
threshold for scalar waves [38]. In our opinion, this
difference reflects the residual dipole-dipole interactions
which are partially suppressed but not fully eliminated by
the magnetic field. As a consequence, Anderson localiza-
tion requires a higher scatterer density and thus is more
difficult to reach for light scattered by atoms in a magnetic
field than for scalar waves. In addition to this, the region of
localized states in the phase diagram of Fig. 3 is signifi-
cantly shifted upwards with respect to its counterpart for
scalar waves [38], its shape is modified and its width is
reduced.
Some features of Fig. 3 can be qualitatively understood

based on the Ioffe-Regel (IR) criterion of Anderson
localization kl ¼ 1 evaluated in the ISA. Calculating the
effective wave number kðωÞ and the scattering mean free
path lðωÞ in the scalar approximation and in the lowest
order in density ρ for an atomic resonance at ω ¼ ωm, we
obtain the dashed-dotted lines in Fig. 3 [21]. The ISAyields
a correct order of magnitude for the minimum density ρc
needed to reach localization and rightly predicts that the
band of localized states is blueshifted with respect to ωm,
although it largely underestimates the magnitude of the
shift. The most obvious failure of the ISA in Fig. 3 is its
complete incapacity to describe the low-frequency mobility

edge. As a consequence, also the width Δω of the spectral
band in which Anderson localization takes place is over-
estimated. The ISA yields a compact expression for it [21]:

Δω
Γ0

¼ π

k30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ − ρcÞðρþ ρ�Þ

p
; ð6Þ

where ρc ¼ k30ð
ffiffiffi
5

p
− 2Þ=π and ρ� ¼ k30ð

ffiffiffi
5

p þ 2Þ=π. This
equation is shown in the inset of Fig. 3 by a dash-dotted
line. Although Eq. (6) does not describe our numerical
results shown by symbols, it can provide a good fit to them
if we treat ρc and ρ� as free fit parameters (solid line in the
inset of Fig. 3).
It is important to keep in mind that in this work we take

two limits in a well-defined order: first B → ∞ and then
N → ∞, ensuring that the condition Δ ≫ b0 needed to
justify Eq. (3) is always obeyed. Changing the order of
limits would require working with the full 3N × 3N matrix
G and might modify the results. In an experiment with cold
atoms, it should be possible to achieve sufficiently strong
fields B to decouple transitions with different magnetic
quantum numbers m for a given N (see Ref. [19] for a
discussion of a possible experiment). The optical locali-
zation transition can be studied by observing the time-
dependent fluorescence of a dense atomic system after an
excitation by a pulse [19]. The fluorescence is expected to
slow down when the frequency and the polarization of the
exciting pulse correspond to those of localized quasimodes.
Spectral analysis of the signal should allow for identifica-
tion of frequencies ωn and decay rates Γn of quasimodes as
it has been already done in quasi-1Dmicrowave experiments
[39], allowing for calculation of Thouless conductance gðωÞ
for each atomic configuration. Using “artificial atoms”
(quantum dots) may have an advantage of obviating the
Doppler and recoil effects inherent for atomic systems [16].
In conclusion, we established the localization phase

diagram for light propagating in a dense random 3D
ensemble of two-level atoms subjected to a strong magnetic
field, and estimated the critical exponent ν of the locali-
zation transition taking place upon varying its frequency.
The value ν ¼ 1.57� 0.07 obtained from a finite-size
scaling analysis, indicates that the transition is an
Anderson transition of 3D orthogonal universality class,
despite the broken time-reversal symmetry of the system
“lightþ atoms” which might have changed its universality
class into the unitary one, but is compensated by a
symmetry between photons of opposite helicities propa-
gating in opposite directions. The transition frequencies are
blueshifted with respect to the atomic resonancesω0 � Γ0Δ
and the minimum number density of atoms required to
reach the transition is ρc ≃ 0.1k30. These features of the
phase diagram are qualitatively reproduced by the IR
criterion of localization evaluated in the ISA. However,
the latter criterion fails to provide quantitatively accurate
results. The anisotropy induced in the atomic medium by

FIG. 3. Localization phase diagram of an ensemble of two-level
atoms in a strong magnetic field. The frequency on the vertical
axis is measured from ωm ¼ ω0 þmΓ0Δ (for m ¼ �1) in units
of Γ0. Symbols are mobility edges calculated from at least
107 (5.5 × 106) eigenvalues for N ¼ 8000 (16 000) at every ρ;
lines are polynomial fits. The crossing point of the latter ρc=k30 ≃
0.1 is an estimation of the absolute localization threshold. Inset:
the width of the frequency band of localized states (circles) fitted
by Eq. (6) (solid line) with ρc=k30 ≃ 0.11 and ρ�=k30 ≃ 0.51. The
dash-dotted lines in both the main plot and the inset are obtained
from the IR criterion in the ISA [21].
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the external magnetic field does not modify the universality
class of the localization transition.
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