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A discrete time crystal is a phase unique to nonequilibrium systems, where discrete time translation
symmetry is spontaneously broken. Most conventional time crystals proposed so far rely on the
spontaneous breaking of on-site symmetries and their corresponding on-site symmetry operations. In
this Letter, we propose a new time crystal dubbed the “spatial-translation-induced discrete time crystal,”
which is realized by spatial translation and its symmetry breaking. Owing to the properties of spatial
translation, in this new time crystal, various time crystal orders can only emerge by changing the filling but
not changing the driving protocol. We demonstrate that the local transport of charges or spins shows a
nontrivial oscillation, enabling detection and applications of time crystal orders, and also provide promising
platforms including quantum circuits. Our proposal opens up a new avenue of realizing time crystal orders
by spatial translation in various quantum simulators.
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Introduction.—A system whose Hamiltonian is periodic
in time is called a Floquet system. The past decade has seen
a tremendous growth of interest in such Floquet systems,
which produce a variety of phases controlled by periodic
driving [1–8]. It has also turned out that Floquet systems
have novel phases that cannot exist in equilibrium, such as
anomalous Floquet topological phases hosting chiral edge
states despite the vanishing Chern numbers [9–13].
One of the most striking phases in Floquet systems is a

discrete time crystal phase. It has indeed been proved that
time crystals, where time translation symmetry is sponta-
neously broken, cannot exist in thermal equilibrium [14].
Thus, time crystals are inherent in nonequilibrium systems.
In particular, time crystals realized in Floquet systems,
called discrete time crystals (DTCs), are phases where
discrete time translation symmetry is spontaneously broken
and the resulting oscillation frequency of local observables
is robust to perturbations. DTCs have attracted much
interest because of their theoretical developments [15,16]
and experimental realizations in various systems [17–21].
In most of conventional DTCs proposed so far, sym-

metry operation and phases brought by many-body locali-
zation (MBL) or spontaneous symmetry breaking (SSB)
are utilized to realize DTC orders [15,16,22–27]. However,
among them, only on-site symmetries by finite groups Zn
have been focused on, thus leading to a restriction that
changing the driving protocol is required to realize different
types of DTC orders.
In this Letter, focusing on spatial translation symmetry,

which is a nonlocal but infinite group symmetry, we
propose new DTCs realized by spatial translation and its
symmetry breaking, and we thereby provide a feasible
platform to realize various kinds of time crystals. First, note

that spatial translation symmetry breaking can induce
various orders. For example, a variety of charge density
wave (CDW) orders can be realized by changing the filling
when discrete spatial translation symmetry is spontane-
ously broken. Therefore, by utilizing these characteristics,
in the new DTC, which is dubbed “spatial-translation-
induced DTC”(STI-DTC), various DTC orders can be
realized and controlled without changing the protocol in
sharp contrast to the previously proposed DTCs. We further
demonstrate that, in STI-DTCs, spatial translation induces
local transport that shows nontrivial oscillation due to the
time crystal orders. This property is characteristic of STI-
DTCs, having merits for the detection and application of
DTC orders. We also provide a general scheme to imple-
ment STI-DTCs with quantum circuits. With the above
novel properties, STI-DTCs will open up a new way of
realizing time crystals in various quantum simulators and
their application to quantum information processing.
Definition and example of DTCs.—First of all, let us

clarify the definition of DTCs. Originally, time crystals
were introduced as systems where spontaneous time trans-
lation symmetry breaking (TTSB) occurs [28]. Since we
consider only the cases when the Hamiltonian is periodic in
time with period T, this means that local observables have a
period different from the Hamiltonian’s period T in its
(quasi)steady states. However, the definition characterized
only by TTSB is inadequate because trivial examples such
as Rabi oscillations are included. To preclude such exam-
ples and define DTC as a stable phase of matter, it should
be defined as a phase where not only TTSB occurs but also
the period of oscillation is robust to perturbations that do
not change the driving period [16]. When the period of the
local observables is nT, the phase is called nT-DTC.
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DTCs are realized in several ways [15,23,29,30]. Among
them, we focus on the one that relies on SSB and its
corresponding symmetry operation. Assume that Floquet
operator Uf, which is the time evolution operator of one
period under the time-periodic HamiltonianHðtÞ, is written
in the form of

Uf ≡ T exp

�
−i

Z
T

0

HðtÞdt
�

¼ X expð−iDTÞ; ð1Þ

where the effective Hamiltonian D induces spontaneous
Zn-symmetry breaking and X is the corresponding sym-
metry operation. Then, TTSB occurs. Intuitively, this is
because some Floquet eigenstates become cat states that are
superpositions of n symmetry broken ordered states. Since
the quasienergies of such cat states are equidistantly
separated by 2π=nT, the oscillation of the cat states with
the period T becomes unstable, and instead, the super-
positions thereof (i.e., macroscopically stable ordered
states) show the nontrivial oscillation. Robustness of
TTSB behavior is supported by several ways, such as
prethermalization and MBL [23,31]. In both cases, the
Floquet operator is unitarily equivalent to the form of
Eq. (1), even if there is a small perturbation, and hence,
TTSB behavior is robust.
Spatial-translation-induced DTC.—Here, we propose a

new type of time crystals: spatial-translation-induced DTCs
(STI-DTCs), where the symmetry operation X is a spatial
translation and D shows spontaneous spatial translation
symmetry breaking.
Let us consider a spinless fermion system in a one-

dimensional ring. We consider a lattice system at half
filling. If the spinless fermions have long-range repulsive
interactions and the temperature of the initial state is low
enough, spatial translation symmetry breaking occurs, and
one of the two symmetry-broken states realizes [Fig. 1(a)].
In each state, one fermion localizes in every two sites and
forms a CDW state. Suppose that spatial translation
operation by one site can be realized by a certain periodic
driving. Then, the dynamics of this system can be described
as Fig. 1(a). Since positions of localized fermions change
every period, the particle density at a certain site oscillates

with a double period of the driving. The nontrivial
2T-period oscillation is expected to be stabilized by the
CDW order. Therefore, this system would be a 2T-DTC if
the assumption were correct [32].
Compared with conventional DTCs, it is notable that

STI-DTCs can utilize Zn orders brought by CDW for any
integer nð≥ 2Þ to realize DTC orders. In other words,
nT-DTCs are expected to be realized at 1=n filling, since a
particle localizes in every n site in each of CDW states.
Thus, STI-DTCs can realize various DTC orders with the
same protocol only by changing the filling.
One important question is how the spatial translation

operation can be realized by local Hamiltonians. If any long
time can be taken for one period, spatial translation is
possible in a one-dimensional ring by Thouless pumping
[33], which is adiabatically performed. It has already been
experimentally realized in cold atoms [34–36], and the
combination with CDW has been theoretically suggested
[37–40]. However, Thouless pumping, which requires
infinite time even for one period, is not suitable for the
realization of DTCs. To overcome this difficulty, we
propose below a one-dimensional ladder ring as a candidate
of STI-DTCs, which is nonadiabatically realizable
[Fig. 1(b)].
Model in 1D ladder.—Here, we describe how to realize a

STI-DTC in a one-dimensional ladder ring. In this model,
as shown in Fig. 1(b), spatial translation TA by one site in
the sublattice A and the opposite one T−1

B in the sublattice B
are induced every period. Since the total amount of
pumping is zero, the time-dependent Hamiltonian is non-
adiabatically realizable by switching local Hamiltonians as
follows [12] (Fig. 2(a)):

HðtÞ ¼

8>><
>>:

H1 ð0 ≤ t ≤ τ=2Þ
H2 ðτ=2 < t ≤ τÞ
HSSB ðτ < t ≤ TÞ;

ð2Þ

where each Hamiltonian is defined as

H1 ¼ −
π

τ

X
i

ðc†i;Aci;B þ H:c:Þ; ð3Þ

H2 ¼ −
π

τ

X
i

ðc†iþ1;Aci;B þ H:c:Þ; ð4Þ

HSSB ¼
X
α¼A;B

X
i;j

Uij

2
ni;αnj;α: ð5Þ

Here, ci;α and ni;α, respectively, represent the annihilation
and the number operator of spinless fermions at site i in a
sublattice α ¼ A, B. Uij represents the strength of the long-
range repulsive interaction, and thenHSSB is a Hamiltonian
that induces spontaneous spatial translational symmetry
breaking at low temperature. As seen below, the time

FIG. 1. (a) Intuitive picture of the STI-DTCs. If spatial trans-
lation is realized, the particle number oscillates with a period of
nT. (b) The model for STI-DTCs. During one period, particles on
the lower ring are translated anticlockwise, and those on the upper
one are translated clockwise; thus in total, there is no pumping.
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evolution, under Hamiltonians H1 and H2, generates the
spatial translation TA ⊗ T−1

B , and the time evolution under
HSSB stabilizes CDW states.
Time translation symmetry breaking.—Let us confirm

that TTSB occurs in the system. How the spatial translation
TA ⊗ T−1

B is generated by the Hamiltonian is explained
intuitively here. The detailed calculation is provided in the
Supplemental Material [41].
First, let us consider the time evolution under the

Hamiltonian H1 given in Eq. (3), which induces hopping
between sites ði; AÞ and ði; BÞ for every i. Since the duration
of imposing H1 is fine-tuned, a particle at ði; AÞ is
completely transferred to ði; BÞ and vice versa by the time
evolution under H1. Similarly, by the time evolution under
H2, exchanges of particles occur between sites ðiþ 1; AÞ
and ði; BÞ [Fig. 2(a)]. When we consider the dynamics
under H1 and H2, a particle at ði; AÞ moves to ði; BÞ, and
after that, it reaches ðiþ 1; AÞ. On the other hand, a particle
at ði; BÞ moves to ði − 1; BÞ. Therefore, the spatial trans-
lation by one site in A and the opposite translation in B are
realized by H1 and H2, as described by

e−iH2τ=2e−iH1τ=2 ¼ ðTA ⊗ T−1
B ÞUp; ð6Þ

where Up ≡ exp f−iπPini;Aðni;B þ niþ1;BÞg is the phase
that stems from the commutation relation of fermion
operators [41]. Here, a global phase other than Up is
removed by a proper gauge transformation.
Then, from Eq. (6), the Floquet operator Uf is described

as follows:

Uf ¼ ðTA ⊗ T−1
B Þ expð−iHSSBðT − τÞÞUp: ð7Þ

Though its form is slightly different from Eq. (1) by the
existence of Up, TTSB can be induced since the spatial
translation TA ⊗ T−1

B moves particles regardless of Up. In
fact, in the Heisenberg picture,

ni;AðmTÞ ¼ ni−m;A; ni;BðmTÞ ¼ niþm;B ð8Þ

is satisfied form ∈ N [41]. Thus, when a CDW state, where
spatial translation symmetry is broken, is prepared as the
initial state, then the particle density or the current at each
site oscillates with a period different from the Hamiltonian
[Fig. 2(b)]. At 1=n filling, since particles localize at every n
site, TTSB occurs, and nT oscillation is observed.
Robustness of TTSB.—One of the nontrivial properties of

DTCs is robustness, that is, the oscillation frequency of the
observables is hardly influenced by some small perturba-
tions. In the case of nT-DTCs, the peak structure of the
Fourier component of the oscillation at ωT ¼ 2π=n does
not move nor split even if there is a small perturbation [16].
To confirm the robustness of DTCs, let us consider

perturbations on symmetry operations [18,24,42]. In the
case of STI-DTCs, the perturbation is assumed to be on the
spatial translation operation, that is, on the duration of H2.
Then, the perturbed Hamiltonian HðtÞ is described as
follows:

HðtÞ ¼

8>><
>>:

H1 ð0 ≤ t ≤ τ=2Þ
H2 ½τ=2 < t ≤ ð1þ rÞτ=2�
HSSB ½ð1þ rÞτ=2 < t ≤ T�

: ð9Þ

When r ¼ 1, Eq. (9) is reduced to the unperturbed
case described by Eq. (2). Thus, the value jr − 1j represents
the strength of the perturbation. The independent param-
eters of the system are r and UintTSSB, where TSSB ≡ T −
ð1þ rÞτ=2 represents the duration of HSSB. Since the
theorem about prethermalization in [23] is not necessarily
applicable to the current system [43], robustness to the
perturbation is examined by the exact diagonalization for
finite systems. We assume a long-range repulsive inter-
action Uij ¼ Uint=r3ij, where rij and Uint represents the
distance between sites i and j and the strength of the
interaction, respectively. Such a long-range interaction is
realized in trapped ions and diamond NV centers, which are
platforms of DTCs [17,18].
Figure 3 represents the results when UintTSSB ¼ 1.0, in

the case of I, 2 × 8 sites at half filling, and II, 2 × 9 sites at
1=3 filling. Here, the initial state is assumed to be an
equilibrium state under HSSB at low temperature, which
spontaneously breaks the spatial translation symmetry. In
this calculation, the initial temperature is zero, and the odd
sites in both sublattices are occupied in the initial state [44].
The Supplemental Material provides the case with finite
initial temperature, which shows a similar result [41]. In
both cases, when r ¼ 1.05, the oscillation of the particle
number hardly decays [see (a)]; thus TTSB behavior is
robust. On the other hand, when r ¼ 1.15, the oscillation
rapidly decays and then DTC order is lost [see (d)].
Robustness can be examined also from their Fourier
spectrum described by (b) and (e). Each of the peaks at

FIG. 2. (a) Hamiltonian described by Eq. (2) for one period.
After Step 1 or Step 2, the particle numbers are exchanged
between sites linked by green or blue lines. Yellow lines in Step 3
mean repulsive interaction. (b) Dynamics of the model. The
period of particle number becomes 2T at half filling.
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ωT=2π ¼ 1=2 and ωT=2π ¼ 1=3 corresponds to each 2T
oscillation and 3T oscillation. It is notable that these peaks
do not move from their original positions when r ¼ 1.05.
This property is unique to DTCs.
From these results, in both cases I and II of Fig. 3, there

seem to be thresholds, where the DTC orders are lost,
between r ¼ 1.05 and r ¼ 1.15. To examine the existence of
the thresholds, the lifetime of STI-DTCs is also calculated
for each r andUintTSSB (Fig. 4). Here, the lifetime is defined
as the time when the amplitude of the oscillation becomes
90% of the initial value. Yellow regions indicate that the
lifetime is more than 100T; thus the DTC order is stable
there. On the other hand, the black regions represent
the cases where no robust oscillation is observed, and the
boundary represents the thresholds where DTC orders are
lost. Thus, Figs. 4(a) and 4(b) can be regarded as phase
diagrams of 2T-DTCs and 3T-DTCs, respectively.
Note that, robustness is observed at half filling even

without the interaction [Fig. 4(a)]. This phenomenon
originates from the statistics of fermions. In the unper-
turbed case, where the Floquet operator is described by
Eq. (7), the effective density-density interaction appears in
Up because of the commutation relation of fermion
operators. Even in perturbed cases, though the form is
different from Up, the effective density-density interaction
appears and could stabilize CDW states at half filling.
Experimental setup.—STI-DTCs are expected to be

realized in various systems since the essential ingredients
for them are spatial translation and its symmetry breaking.
For example, spin systems can also realize STI-DTCs by
utilizing SWAP gates and antiferromagnetic order [41]. Thus
it is expected that there are various platforms for realizing
STI-DTCs.

For example, in trapped ions and Rydberg atoms, long-
range interactions that can realize CDW order have been
experimentally observed [18,45]. On the other hand, in cold
atoms, selective hopping by H1 and H2 is theoretically
proposed by moving optical lattices [12], and long-range
interactions can be realized by dipole-dipole interactions
and electric fields [42]. Thus, these are candidates for
STI-DTCs.
One of the most promising platforms is a quantum circuit

as a quantum simulator [46,47]. Since the dynamics of
Floquet systems are described by Uf, STI-DTCs can be
realized once the unitary gate of Uf is prepared. In fact, Uf
described by Eq. (7) is realizable since the time evolution
operators underH1,H2, andHSSB can be composed of NOT
gates, SWAP gates, and CPHASE gates [41]. Quantum circuits
are, or will be, realized by various platforms, such as
superconducting qubits and quantum dots [47–50]. Thus
STI-DTCs on quantum circuits will be realized by various
platforms.

(f)(c)

1.05

2 2 3 3

1.05 1.051.15 1.15

1.051.15 1.15

(c) (f)

FIG. 3. Dynamics of the particle number and its Fourier spectrum in the case of (i) 2 × 8 sites at half filling and in the case of (ii) 2 × 9
sites at 1=3 filling, (a,b) when r ¼ 1.05 and (d,e) when r ¼ 1.15, respectively. (c) and (f) are enlarged figures of (a) and (d), respectively.
In each calculation, the interaction UintTSSB is 1.0 and the duration τ=T is 0.1. The peaks at ωT=2π ¼ 0 in the spectrum are neglected
since they are not related to TTSB behavior. In each situation, the dynamics shown in the figures are the full time evolutions but not the
stroboscopic ones.

FIG. 4. Lifetime for each r and UintTSSB is described by the
colors. In the yellow regions, lifetime is more than 100T, where T
represents the driving period. The green points in (a) and
(b) correspond to the cases described in Fig. 3 I(a) and
Fig. 3 II(a), respectively.
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Conclusions.—In this Letter, a new type of DTCs,
spatial-translation-induced DTCs, have been proposed. In
this time crystal, spatial translation operation changes the
system from a CDW state to another CDW state; thus the
particle number oscillates with a period different from its
Hamiltonian. Unlike almost all the conventional DTCs,
DTC orders in this system can be controlled by changing its
filling. A one-dimensional ladder ring under a periodic
drive has been proposed as a model of STI-DTCs, which is
realizable without adiabaticity.
One question left open is to clarify the origin of

robustness. In this Letter, robustness of the STI-DTCs
has been confirmed by numerical calculations. Despite the
inapplicability of the theorem about prethermalization in
[23], the robustness of TTSB behavior has been observed,
as seen in other examples [17,25,42,51]. Though it has
been qualitatively demonstrated in this Letter that the CDW
order supports the robustness, its quantitative evaluation by
analytical calculation is desired.
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