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Following up on our earlier work [K. A. Meissner and H. Nicolai, Phys. Rev. D 91, 065029 (2015)]
where we showed how to amend a scheme originally proposed by M. Gell-Mann to identify the 48 spin-1

2

fermions of N ¼ 8 supergravity that remain after complete breaking of N ¼ 8 supersymmetry with the
3 × 16 quarks and leptons of the standard model, we further generalize the construction to account for the
full SUð3Þc × SUð2Þw × Uð1ÞY assignments, with an additional family symmetry SUð3Þf. Our proposal
relies in an essential way on embedding the SU(8) R symmetry of N ¼ 8 supergravity into the (infinite-
dimensional) “maximal compact” subgroupKðE10Þ of the conjectured maximal duality symmetry E10. As a
by-product, it predicts fractionally charged and possibly strongly interacting massive gravitinos. It also
indicates how E10 and KðE10Þ can supersede supersymmetry as a guiding principle for unification.

DOI: 10.1103/PhysRevLett.121.091601

It is generally believed that neither the particle content
nor the dynamics of maximal N ¼ 8 supergravity [1,2] can
be matched with the standard model (SM) of particle
physics. In this Letter we reexamine this widely accepted
wisdom on the basis of recent work [3,4], which further
develops an old proposal of Gell-Mann’s [5] to identify the
48 quarks and leptons of the SM with the 48 spin-1

2

fermions that remain after complete breaking of N ¼ 8

supersymmetry. As shown in Ref. [3] the mismatch � 1
6
of

electric charges in the original Gell-Mann scheme can be
rectified by introducing a new vectorlike generator I not
contained in the SU(8) R symmetry group of N ¼ 8
supergravity. However, in subsequent work [4] it was
shown that this new generator does belong to KðE10Þ,
the maximal compact subgroup of the hyperbolic Kac-
Moody group E10 conjectured to be a symmetry underlying
M theory [6,7], thus demonstrating the need for new
ingredients beyond N ¼ 8 supergravity. Here we take this
construction one step further by exploring how the full
SUð3Þc × SUð2Þw × Uð1ÞY symmetry of the SM might be
incorporated into this scheme, together with an additional
family symmetry SUð3Þf that does not commute with the
electroweak symmetries.
As the present proposal differs substantially from current

paradigms to derive the SM fermions from a Planck scale
unified theory of quantum gravity, let us first explain our
basic “philosophy.” Our considerations here are based on

the central conjecture of Ref. [6] according to which the full
E10 symmetry conjectured to underlie M theory manifests
itself in a “near singularity limit.” This conjecture itself is
based on a BKL-type analysis of cosmological singular-
ities, where the causal decoupling of spatial points entails
an effective dimensional reduction to one (time) dimension
[8]. In this pregeometric regime, the spatial dependence of
the fields is supposed to “deemerge” near the singularity, in
the sense that it gets “spread” over the Lie algebra of E10, as
outlined in Ref. [6]. We emphasize, however, that explain-
ing the emergence of a space-time based quantum field
theory in this scheme, as well as explaining the emergence
of space-time symmetries and the distinction between
global and local symmetries, is still an unsolved problem.
Subsequent analysis of the fermionic sector of the theory

[9] has revealed that the relevant symmetry acting on the
fermions is the involutory (“maximal compact”) subgroup
KðE10Þ of E10, the conjectured R symmetry of M theory.
Here as well, one restricts attention in a first step to the
fermionic fields at a given spatial point, with the idea that
the spatial dependence would emerge in a more complete
description based on more faithful realizations of KðE10Þ.
So far, however, only finite-dimensional unfaithful
spinorial (double-valued) representations of KðE10Þ are
known [9,10], the two simplest of which are in one-to-one
correspondence with the spinors of maximal supergravity.
The action of KðE10Þ on these representations can be
conveniently described in terms of the quotient group
GR ¼ KðE10Þ=NR, where NR is the normal subgroup
associated with the ideal spanned by those KðE10Þ gen-
erators that annihilate all elements of the given representa-
tion spaceR. For the Dirac representation corresponding to
the supersymmetry parameter we have GD¼Spinð32Þ=Z2,
while for the Rarita-Schwinger representation describing
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the physical fermionic degrees of freedom we have GRS ¼
Spinð288; 32Þ=Z2 [11]; the latter group also contains
transformations acting chirally on the N ¼ 8 fermions.
We expect there to exist bigger and less unfaithful repre-
sentations which can possibly capture more of the spatial
dependence [12].
Although the present scheme necessarily transcends

N ¼ 8 supergravity, this theory nevertheless continues to
play a crucial role in “guiding” our proposal, in that we
insist on remaining compatible with the original scheme of
Ref. [5], and with the known vacuum structure of gauged
maximal supergravities with stationary points preserving a
residual SUð3Þ × Uð1Þ symmetry [13–16]. The group
SUð3Þc ×Uð1Þem is believed to be the gauge symmetry
that survives to the lowest energies in the SM, but a naive
identification of the supergravity SU(3) with the color
group SUð3Þc does not work, as is immediately obvious
from Eq. (6). For this reason, M. Gell-Mann introduced an
additional family symmetry SUð3Þf that acts between the
three particle families (generations) and proposed to
identify the residual SU(3) of supergravity with the
diagonal subgroup of color and family [5]. This scheme
“almost” works in the sense that, after the removal of eight
Goldstinos there is complete agreement of the SU(3)
assignments, but there remains a systematic mismatch in
that the U(1) charges of the supergravity fermions are
systemically off by � 1

6
from the electric charges of the

quarks and leptons. As noticed in Ref. [3] this mismatch
can be remedied by means of the extra generator (8) which
“deforms” the SUð3Þ × Uð1Þ group. Although this defor-
mation is no longer contained in SU(8), it is contained in
KðE10Þ [4]. One notable feature here is that even though
accompanied by a vast enlargement of the R symmetry, our
proposal makes do with the original 56 spin-1

2
fermions and

eight gravitinos, whereas more conventional schemes
would require correspondingly larger multiplets for larger
groups.
Accordingly, we now focus on the fermionic sector of

N ¼ 8 supergravity, which consists of eight gravitinos ψ i
μ

transforming in the 8, and a tri-spinor of spin-1
2
fermions

χijk transforming in the 56 of SU(8), where χijk is fully
antisymmetric in the SU(8) indices i, j, k. We adopt the
conventions and notations of Ref. [2], where complex
conjugation raises (or lowers) indices, such that, for
instance, χijk ¼ ðχijkÞ�, and where upper (lower) position
of the SU(8) indices indicates positive (negative) chirality.
Hence the chiral SU(8) transformations act as χijk →
Ui

lU
j
mUk

nχ
lmn, χijk → Ul

iU
m
j U

n
kχlmn with U ∈ SUð8Þ, Uj

i ≡
ðUi

jÞ� and Ui
kU

k
j ¼ δij.

As already pointed out, a special role is played by the
subgroup SUð3Þ × Uð1Þ, which is contained in the vector-
like gauge group SOð8Þ ⊂ SUð8Þ via the real embedding
SUð3Þ × Uð1Þ ⊂ SOð6Þ × SOð2Þ ⊂ SOð8Þ [5,14]. To study
the relevant decompositions we introduce boldface indices

1; ...; 4, and barred indices 1̄;…; 4̄ for the conjugate repre-
sentations as in Refs. [3,14], but nowwith unit normalization
so that v1 ≡ 2−1=2ðv1 þ iv2Þ, v2 ≡ 2−1=2ðv3 þ iv4Þ, etc. and
v1̄ ≡ 2−1=2ðv1 − iv2Þ, v2̄ ≡ 2−1=2ðv3 − iv4Þ, etc.
Similar rules apply to the fermions; for instance,

φ124̄ ≡ 1

2
ffiffiffi

2
p ðχ137 þ iχ237 þ iχ147 − iχ138

− χ247 þ χ238 þ χ148 þ iχ248Þ; ð1Þ

and so on. It is important here that the spinor φ1̄ 2̄ 4 with
barred and unbarred indices interchanged is not the com-
plex conjugate of φ124̄ because the spinor components χijk

are themselves complex. Writing Eq. (1) in the schematic
form φ ¼ S ∘ χ it is easy to see that S decomposes into
12 blocks of 2-by-2 matrices and four blocks of 8-by-8
matrices; see Ref. [17] for explicit formulas.
For the further analysis we single out the first three

indices with labels a;b;… ¼ 1; 2; 3, on which the SU(3)
subgroup acts. There is furthermore a two-parameter family
of U(1) subgroups embedded as follows into SO(8)

Yðα; βÞ ¼

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 −α 0 0 0 0 0 0

α 0 0 0 0 0 0 0

0 0 0 −α 0 0 0 0

0 0 α 0 0 0 0 0

0 0 0 0 0 −α 0 0

0 0 0 0 α 0 0 0

0 0 0 0 0 0 0 −β
0 0 0 0 0 0 β 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: ð2Þ

This matrix commutes with Uð3Þ × Uð1Þ ⊂ SOð8Þ for all α,
β, and thus defines an SUð3Þ × Uð1Þ subgroup of SO(8) for
each choice of α and β. As shown in Ref. [5] we must take

α ¼ 1

6
; β ¼ 1

2
; ð3Þ

in order to match the N ¼ 8 fermions with those of the
standard model (and incidentally also in accord with the
structure of N ¼ 2 AdS supermultiplets [14]). With this
choice one easily reads off the SUð3Þ × Uð1Þ assignments
for the gravitinos

ψa
μ ∈

�

3;
1

6

�

; ψ ā
μ ∈

�

3̄;−
1

6

�

;

ψ4
μ ∈

�

1;
1

2

�

; ψ 4̄
μ ∈

�

1;−
1

2

�

: ð4Þ
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The 56 spin-1
2
fermions are split into 6þ 2 Goldstinos

φa ≡ φa44̄ ∈
�

3;
1

6

�

; φā ≡ φā44̄ ∈
�

3̄;−
1

6

�

;

φ4 ≡ φabc ∈
�

1;
1

2

�

; φ4̄ ≡ φā b̄ c̄ ∈
�

1;−
1

2

�

; ð5Þ

and the remaining 48 spin-1
2
fermions:

φab4 ∈
�

3̄;
5

6

�

; φab4̄ ∈
�

3̄;−
1

6

�

;

φā b̄4 ∈
�

3;
1

6

�

; φā b̄ 4̄ ∈
�

3;−
5

6

�

;

φabc̄ ∈
�

3;
1

6

�

⊕
�

6̄;
1

6

�

; φā b̄c ∈
�

3̄;−
1

6

�

⊕
�

6;−
1

6

�

;

φab̄4 ∈
�

8;
1

2

�

⊕
�

1;
1

2

�

; φab̄4̄ ∈
�

8;−
1

2

�

⊕
�

1;−
1

2

�

:

ð6Þ

To be sure, in order to properly identify the Goldstinos,
we must allow for a possible mixing between the
representations with the same SUð3Þ × Uð1Þ content,
as is also obvious from the mass eigenstates at the
SUð3Þ × Uð1Þ stationary point [14]. However, the precise
form of the mixing depends on the dynamics which is
expected to deviate from N ¼ 8 supergravity and which at
this point is unknown. It is an essential assumption
here that even with such mixing we can bring the
fermions to the form with the labeling exhibited above,
possibly by means of a chiral redefinition of the fermions.
We then assume that all supersymmetries are broken at a
high scale, such that all gravitinos acquire a very
large mass.
Now, as first pointed out in Ref. [5], with the above

choice of Goldstinos the three generations of SM fermions
can be matched with the remaining 48 spin-1

2
fermions from

Eq. (6), provided one identifies the supergravity SU(3) with
the diagonal subgroup of color SUð3Þc and a new family
symmetry SUð3Þf, viz.,

SUð3Þ≡ ½SUð3Þc × SUð3Þf�diag; ð7Þ

and furthermore allows for a spurion charge � 1
6
to correct

the U(1) charges in Eq. (6) so as to recover the known
electric charges of quarks and leptons. More specifically,
the assignments are as follows: [5]

ðu; c; tÞL 3c × 3̄f → 8 ⊕ 1
2

3
¼ 1

2
þ q

ðū; c̄; t̄ÞL 3̄c × 3f → 8 ⊕ 1 −
2

3
¼ −

1

2
− q

ðd; s; bÞL 3c × 3f → 6 ⊕ 3̄ −
1

3
¼ −

1

6
− q

ðd̄; s̄; b̄ÞL 3̄c × 3̄f → 6̄ ⊕ 3
1

3
¼ 1

6
þ q

ðνe; νμ; ντÞL 1c × 3̄f → 3̄ 0 ¼ −
1

6
þ q

ðν̄e; ν̄μ; ν̄τÞL 1c × 3f → 3 0 ¼ 1

6
− q

ðe−; μ−; τ−ÞL 1c × 3f → 3 − 1 ¼ −
5

6
− q

ðeþ; μþ; τþÞL 1c × 3̄f → 3̄ 1 ¼ 5

6
þ q;

where we made use of the fact that right-chiral particles can
be equivalently described by their left-chiral antiparticles,
and where the spurion shift is q ¼ 1

6
with alternating signs

between triplets and antitriplets of SUð3Þf.
The main advance reported in Ref. [3] was to show that

with the representation (6) of the N ¼ 8 spin-1
2
fermions the

spurion shift can be accounted for by means of the Uð1Þq
transformations exp ð1

6
ωIÞ, where

I ≔
1

2
ðT ⊗ 1 ⊗ 1þ 1 ⊗ T ⊗ 1þ 1 ⊗ 1 ⊗ T

þ T ⊗ T ⊗ TÞ; ð8Þ

with T ≡ Yð1; 1Þ [cf. (2)]. Because T acts as þi (or −i) on
an unbarred (barred) index it is easy to see that I gives ðþiÞ
on φ’s with no or only one barred index, and ð−iÞ on φ’s
with two or three barred indices. Importantly, the term with
T ⊗ T ⊗ T, and hence the generator I are not elements of
SU(8). However, in Ref. [4] it was shown that this new
generator does belong to KðE10Þ, and that furthermore the
action of the generator T ⊗ T ⊗ T can be extended to the
gravitinos, with I ∘ ψ ¼ T ∘ ψ . Therefore the action of 1

6
I

adds � 1
6
to the U(1) charges of the gravitinos in Eq. (4).

Consequently, ψa
μ has electric charge

1
3
, and ψ4

μ has electric

charge 2
3
, consistent with the assignments (5); ψ ā

μ and ψ 4̄
μ

have the opposite electric charges.
While the new generator I commutes with the original

SUð3Þ × Uð1Þ, and, therefore, merely deforms it but does
not enlarge it, this is not so with the remaining generators of
SU(8). As shown in Ref. [11], repeated commutation of I
with the elements of SU(8) generates a much bigger group
acting on χijk, namely, SU(56). Because I ∈ KðE10Þ, the
latter group is also contained in KðE10Þ, and should,
consequently, be viewed as a subgroup of the quotient
group GRS ¼ Spinð288; 32Þ=Z2. The fact that this SU(56)
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group acts chirally motivates us to look for a realization of
the full SM symmetries within KðE10Þ.
To this aim we now “take the tri-spinor apart” into its

8þ 48 components, and write out the correspondence more
explicitly for the left-chiral particles

Uaā
L ≡ ðua; ca; taÞL ≡ ðφa1̄4;φa2̄4;φa3̄4Þ;

Daa
L ≡ ðda; sa; baÞL ≡ ðφa2̄ 3̄;φa3̄ 1̄;φa1̄ 2̄Þ;
Nā

L ≡ ðνe; νμ; ντÞL ≡ ðφ234̄;φ314̄;φ124̄Þ;
Ea
L ≡ ðe−; μ−; τ−ÞL ≡ ðφ2̄ 3̄ 4̄;φ3̄ 1̄ 4̄;φ1̄ 2̄ 4̄Þ; ð9Þ

and for the left-chiral antiparticles,

Ūāa
L ≡ ðūā; c̄ā; t̄āÞL ≡ ðφā14̄;φā24̄;φā34̄Þ;

D̄ā ā
L ≡ ðd̄ā; s̄ā; b̄āÞL ≡ ðφā23;φā31;φā12Þ;
N̄a

L ≡ ðν̄e; ν̄μ; ν̄τÞL ≡ ðφ2̄ 3̄ 4;φ3̄ 1̄ 4;φ1̄ 2̄ 4Þ;
Ēā
L ≡ ðeþ; μþ; τþÞL ≡ ðφ234;φ314;φ124Þ: ð10Þ

We emphasize again that the spinors (10) are not simply
complex conjugates of (9), but independent fields (as
would be completely obvious if we had written them as
right-chiral particles). Thus, we now have color indices
a;b;…≡ 1; 2; 3 and family indices a; b;…≡ 1; 2; 3
(or ð½2̄ 3̄�; ½3̄ 1̄�; ½1̄ 2̄�Þ), thereby disentangling the diagonal
SU(3) subgroup into its factors SUð3Þc and SUð3Þf.
Accordingly, we stipulate that SUð3Þc acts on indices
a;b;… as Daa → iλabD

bā; Uaā → iλabU
bā, where λ is any

of the (Hermitean) Gell-Mann matrices. Similarly, the
SUð3Þf acts on the indices a; b;…, such that for instance

Daa → iλabD
ab andUaā → −iðλ�Þā

b̄
Uab̄. The indices 4 and 4̄

are unaffected by these SU(3) actions.
For the electroweak SUð2Þw we treat ðU;DÞL and

ðN;EÞL as doublets, viz.

�

Uaā

Daa

�

→ iω · τ
�

Uaā

Daa

�

;
�

Nā

Ea

�

→ iω · τ
�

Nā

Ea

�

; ð11Þ

with the Pauli isospin matrices τ ≡ ðτ1; τ2; τ3Þ and isospin
parameters ω. By contrast, the left-chiral antiparticles
ðŪ; D̄; N̄; ĒÞ are treated as SUð2Þw singlets, and this is
perfectly consistent because these spinors are independent,
as we already said. There is no need to discuss Uð1ÞY
separately, as the associated hypercharges can be recovered
from the standard formula Q ¼ T3 þ Y. It is an unaccus-
tomed feature that the electroweak SUð2Þw does not
commute with SUð3Þf, as the upper and lower components
of the electroweak doublets are assigned to opposite
representations of SUð3Þf, such that the SUð3Þf is realized
via the block matrix

� ðU�Þā
b̄

0

0 Ua
b

�

; U ∈ SUð3Þf ð12Þ

in the electroweak isospin space. This prescription is
reminiscent of old attempts to merge the spin rotation
group SU(2) with the flavor symmetry SU(3) into SU(6),
but the groups SUð2Þw and SUð3Þf are expected to be
simultaneously realized as noncommuting symmetries only
in the phase with unbroken KðE10Þ, which does not admit a
local realization within space-time based quantum field
theory (this may explain why attempts at a group theoreti-
cal family unification have not met with success so far). We
recall that the action of E10 on the bosonic fields likewise
does not admit a local realization [6].
While obviously motivated by the known symmetry

assignments of quarks and leptons the above construction
does not tell us how these symmetries act on the gravitinos
and Goldstinos, and more specifically, whether the SU(3)
acting on them should be identified with SUð3Þc or SUð3Þf.
It is clear that for consistency this action must be the same
on (4) and (5). It then appears reasonable to demand the
absence of gauge anomalies for quarks and leptons to
persist with these fields. The simplest choice ensuring this
is to assign (4) and (5) to transform as 3 ⊕ 3̄ ⊕ 1 ⊕ 1̄ of
SUð3Þc, but as singlets under electroweak SUð2Þw and
SUð3Þf. With this choice we are led to predict fractionally
charged and strongly interacting massive gravitinos, imply-
ing a novel menagerie of exotic dark matter candidates,
possibly even fractionally charged massive bound states of
gravitinos and quarks. Otherwise, the gravitinos would
have to be assigned to chiral representations of SUð2Þw (in
which case the largest anomaly-free subgroup acting
chirally on the gravitinos is indeed SUð2Þ × Uð1Þ [18])
and could acquire masses only jointly with electroweak
symmetry breaking.
Having realized the action of all SM symmetries on all

fermions, we can now express these actions directly in
terms of the original tri-spinor χijk, that is, in the form

χijk → Mijk
lmnðGÞχlmn; ð13Þ

with

MðGÞ ¼ S−1 ∘ G ∘ S ∈ SUð56Þ; ð14Þ

where G ∈ SUð3Þc × SUð2Þw × Uð1ÞY or ∈ SUð3Þf. The
matrix MðGÞ is real [that is, M ∈ SOð56Þ] for the vector-
like rotations in SUð3Þc, SUð3Þf, and Uð1Þem, and complex
(but still unitary) for chiral electroweak rotations; more
generally, transformations that do not mix barred and
unbarred indices are vectorlike, whereas transformations
that do mix them are chiral. As there is no space here to
present a complete list of 56-by-56 matrices we have
collected explicit formulas in Ref. [17].
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Obviously, KðE10Þ is humongously larger than any
symmetry so far considered for fermion unification, and
it is therefore all the more remarkable that it admits a
realization on precisely 48 spin-1

2
fermions and eight

massive gravitinos. This enlargement beyond SU(8) hinges
crucially on the presence of timelike imaginary roots in E10

(which have no analog in finite dimensional Lie groups),
and thus directly on the hyperbolicity of E10 [11]. However,
like for the bosonic sector [6], these considerations are
limited, at least for the time being, to one given spatial
point, and therefore the main challenge remains to incor-
porate the spatial dependence, and to explain how KðE10Þ
“unfolds” in terms of bigger and less unfaithful represen-
tations to give rise to emergent space-time and gauge
symmetries. A realization of the present scheme would
evidently require part ofKðE10Þ to become dynamical (e.g.,
with composite vector bosons W� and Z), in a partial
realization of a conjecture already made in Ref. [1] for the
R symmetry SU(8), but now for a much bigger group, and
with a very different mechanism for extracting space-time
fields. Similarly, one may ask why the theory should pick a
vacuum where KðE10Þ is broken to the SM symmetries in
the way described above; we note, however, that the
necessity of canceling SM gauge anomalies provides an
extremely constraining criterion for vacuum selection and
symmetry breaking. Finally, there is the question how
supersymmetry is ultimately disposed of: is it actually there
and only broken by some clever mechanism, or is it
altogether absent even at the most fundamental level?
Indeed, there is evidence that (conventional) supersym-
metry is incompatible with KðE10Þ precisely because of the
presence of imaginary roots [19]. This could imply that
supersymmetry in particle physics may remain a chimera,
and even in the context of maximal N ¼ 8 supergravity not
more than a secondary manifestation of a deeper and more
powerful underlying duality symmetry.
While much effort will be required to validate the present

proposal (assuming there is any truth in it), it offers three
main advantages in comparison with other schemes for
fermion unification: (i) it can explain the SM fermion
spectrum as is, without N ¼ 1 superpartners or other
exotica, (ii) it confirms, and is compatible only with the
existence of three generations of SM fermions, and (iii) it
can be directly and immediately falsified by the detection of
any new fundamental spin-1

2
fermion, be it via the discovery

of low energy N ¼ 1 supersymmetry or of new sterile
fermions. Our proposal underlines the potential importance

of the infinite-dimensional exceptional algebras E10 and
KðE10Þ, and shows how these so far elusive structures
might supplant supersymmetry as a guiding principle for
unification, and how they might become essential for
making contact with SM physics.
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