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We use gravitational-wave observations of the binary neutron star merger GW170817 to explore the tidal
deformabilities and radii of neutron stars. We perform a Bayesian parameter estimation with the source
location and distance informed by electromagnetic observations. We also assume that the two stars have the
same equation of state; we demonstrate that, for stars with masses comparable to the component masses of
GW170817, this is effectively implemented by assuming that the stars’ dimensionless tidal deformabilities
are determined by the binary’s mass ratio q by Λ1=Λ2 ¼ q6. We investigate different choices of prior on the
component masses of the neutron stars. We find that the tidal deformability and 90% credible interval is
Λ̃ ¼ 222þ420

−138 for a uniform component mass prior, Λ̃ ¼ 245þ453
−151 for a component mass prior informed by

radio observations of Galactic double neutron stars, and Λ̃ ¼ 233þ448
−144 for a component mass prior informed

by radio pulsars. We find a robust measurement of the common areal radius of the neutron stars across all
mass priors of 8.9 ≤ R̂ ≤ 13.2 km, with a mean value of hR̂i ¼ 10.8 km. Our results are the first
measurement of tidal deformability with a physical constraint on the star’s equation of state and place the
first lower bounds on the deformability and areal radii of neutron stars using gravitational waves.
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Introduction.—On August 17, 2017 LIGO and Virgo
observed gravitational waves from a binary neutron star
coalescence, GW170817 [1]. This observation can be used
to explore the equation of state (EOS) of matter at super-
nuclear densities [2,3]. This information is encoded as a
change in gravitational-wave phase evolution caused by the
tidal deformation of the neutron stars [4]. At leading order,
the tidal effects are imprinted in the gravitational-wave
signal through the binary tidal deformability [4,5]

Λ̃ ¼ 16

13

ð12qþ 1ÞΛ1 þ ð12þ qÞq4Λ2

ð1þ qÞ5 ; ð1Þ

where q ¼ m2=m1 ≤ 1 is the binary’s mass ratio
[cf. Eq. (34) of Ref. [6] ]. The deformability of each star is

Λ1;2 ¼
2

3
k2

�
R1;2c2

Gm1;2

�
5

; ð2Þ

where k2 is the tidal Love number [4,5], which depends on
the star’s mass and the EOS. R1;2 andm1;2 are the areal radii
and masses of the neutron stars, respectively.
In the results of Ref. [1], the priors onΛ1;2 are taken to be

completely uncorrelated, which is equivalent to assuming
that each star may have a different EOS. Here, we reanalyze
the gravitational-wave data using Bayesian inference [7–9]
to measure the tidal deformability, using a correlation
between Λ1 and Λ2 which follows from the assumption

that both stars have the same EOS. We repeat our analysis
without the common EOS constraint and calculate the
Bayes factor that compares the evidences for these two
models. We also fix the sky position and distance from
electromagnetic observations [10,11]. We study the effect
of the prior for the component masses by performing
analyses with three different priors: the first is uniform
between 1 and 2M⊙, the second is informed by radio
observations of double neutron star binaries, and the third is
informed by the masses of isolated pulsars [12].
The common equation of state constraint.—To explore

imposing a common EOS constraint, we employ a piece-
wise polytrope scheme [13] to simulate thousands of
equations of state. Each EOS obeys causality, connects
at low densities to the well-known EOS of neutron star
crusts [14], is constrained by experimental and theoretical
studies of the symmetry properties of matter near the
nuclear saturation density, and satisfies the observational
constraint for the maximum mass of a neutron star, mmax ≥
2M⊙ [15]. Figure 1 shows the results of Tolman-
Oppenheimer-Volkoff (TOV) integrations [16,17] to deter-
mine Λ as functions of m, R, and the EOS. Each
configuration is color coded according to its radius. In
the relevant mass range, Λ generally varies as m−6. For a
given mass m, there is an inherent spread of about a factor
of ten in Λ, which is correlated with R6. We find that the
star’s tidal deformability is related to its compactness
parameter β ¼ Gm=ðRc2Þ by the relation Λ ≃ aβ−6. We
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find that a ¼ 0.0093� 0.0007 bounds this relation if
1.1M⊙ ≤ m ≤ 1.6M⊙ (note that this is a bound, not a
confidence interval). The additional power of β−1 in the
Λ − β relation, relative to β−5 in Eq. (2), originates because
the dimensionless tidal Love number, k2, varies roughly as
β−1 for masses ≥ 1M⊙, although this is not the case for all
masses [17]. For m → 0, we see that k2 → 0 so that k2 is
proportional to β with a positive power, but since neutron
stars with m < 1M⊙ are physically unrealistic, that domain
is not pertinent in this Letter.
We observed that, for nearly every specific EOS, the

range of stellar radii in the mass range of interest for
GW170817 is typically small. As long asmmax ≥ 2M⊙, the
piecewise polytrope study reveals hΔRi ¼ −0.070 km andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔRÞ2i

p
¼ 0.11 km, where ΔR≡ R1.6 − R1.1 with

R1.1;1.6 the radii of stars with m ¼ 1.1 and m ¼ 1.6M⊙,
respectively. Therefore, for masses relevant for
GW170817, each EOS assigns a common value of R̂ to
stellar radii with little sensitivity to the mass. We can
combine the relations Λ ≃ aβ−6 and R1 ¼ R2 to find the
simple prescription Λ1 ¼ q6Λ2. We impose the common
EOS constraint in our analysis using this relation. The
exponent of q changes with chirp mass M, and for
M > 1.5M⊙, this relation has to be modified. However,
this is not relevant for the study of GW170817.
Implications for the neutron star radius.—The common

EOS constraint allows us to show that the binary tidal
deformability Λ̃ is essentially a function of the chirp mass
M, the common radius R̂, and the mass ratio q, but that its
dependence on q is very weak. Substituting the expressions
Λ ≃ aβ−6 and R ¼ R̂ into Eq. (1), we find

Λ̃ ¼ 16a
13

�
R̂c2

GM

�
6

fðqÞ: ð3Þ

where fðqÞ is very weakly dependent on q

fðqÞ ¼ q8=5ð12 − 11qþ 12q2Þð1þ qÞ−26=5: ð4Þ

For example, if we compare a binary with q ¼ 0.75 to an
equal mass binary, we find fð0.75Þ=fð1Þ ¼ 1.021. As long
as q ≥ 0.6, valid for 1M⊙ ≤ m ≤ 1.6M⊙ for both stars, we
infer from Eq. (3),

Λ̃ ¼ a0
�
R̂c2

GM

�
6

; ð5Þ

where a0 ¼ 0.0042� 0.0004. The Supplemental Material
[18] shows TOV integrations for a range of EOS that
validate this relationship. For stars with masses comparable
to GW170817, the common radius R̂ can be found from the
inversion of Eq. (5)

R̂ ≃ R1.4 ≃ ð11.2� 0.2Þ M
M⊙

�
Λ̃
800

�
1=6

km: ð6Þ

The quoted errors originate from the uncertainties in a and
q, and amount, in total, to 2%.
Parameter estimation methods.—We use Bayesian infer-

ence to measure the parameters of GW170817 [40]. We
calculate the posterior probability density function,
p(θ⃗jd⃗ðtÞ; H), for the set of parameters θ⃗ for the gravita-
tional-waveform model, H, given the LIGO Hanford,
LIGO Livingston, and Virgo data d⃗ðtÞ [26,27]

p(θ⃗jd⃗ðtÞ; H) ¼ pðθ⃗jHÞp(d⃗ðtÞjθ⃗; H)

p(d⃗ðtÞjH)
: ð7Þ

The prior, pðθ⃗jHÞ, is the set of assumed probability
distributions for the waveform parameters. The likelihood
p(d⃗ðtÞjθ⃗; H) assumes a Gaussian model for the detector
noise [41]. Marginalization of the likelihood to obtain the
posterior probabilities is performed using Markov Chain
Monte Carlo (MCMC) techniques using the PYCBC
inference software [7,8] and the parallel-tempered EMCEE

sampler [9,28,29]. We fix the sky location and distance to
GW170817 [10,11] and calculate the posterior probabilities
for the remaining source parameters. Following Ref. [1],
the waveform model H is the restricted TaylorF2 post-
Newtonian aligned-spin model [30–34,42]. Technical
details of our parameter estimation and a comparison
to Fig. 5 of Ref [1] are provided as Supplemental
Material [18].
To implement the common EOS constraint, we construct

the priors on Λ1;2 according to

m

FIG. 1. The tidal deformability Λ as a function of mass for
physically realistic polytropes. ATOV integration with each EOS
parameter set results in a series of values of ΛðmÞ that are shown
as points colored by their radii R. Dashed curves are lower
bounds to Λ for a given mass m which vary depending on the
assumed lower limit to the neutron star maximummass,mmax. All
values of mmax produce the same upper bound.
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Λ1 ¼ q3Λs; Λ2 ¼ q−3Λs; ð8Þ

where Λs ∼ U½0; 5000�. We discard draws with Λ̃ > 5000,
since these values are beyond the range of all plausible EOS.
The resulting prior on Λ̃ is uniform between 0 and 5000.We
also perform analyses that do not assume the common EOS
constraint where we allow completely uncorrelated priors
for Λ1;2. This allows us to compare the evidences between
these hypotheses. For the uncorrelated Λ1;2 analyses, the
prior for Λ1 ∼U½0; 1000� and Λ2 ∼U½0; 5000� with these
intervals set by the range of plausible equations of state in the
mass range of interest, our convention of m1 ≥ m2, and
discarding draws with Λ̃ > 5000.
The choice of mass prior can have an impact on the

recovery of the tidal deformability [43]. To investigate this,
we carry out our parameter estimation analyses using three
different priors on the binary’s component masses. First, we
assume a uniform prior on each star’s mass, with
m1;2 ∼U½1; 2�M⊙. Then, we assume a Gaussian prior on
the component masses m1;2 ∼ Nðμ ¼ 1.33; σ ¼ 0.09ÞM⊙,
which is a fit to masses of neutron stars observed in double
neutron star systems [12]. The third prior assumes that the
component masses are drawn from a fit to the observed
mass distributions of recycled and slow pulsars in the
Galaxy with m1 ∼ Nðμ ¼ 1.54; σ ¼ 0.23ÞM⊙ and m2 ∼
Nðμ ¼ 1.49; σ ¼ 0.19ÞM⊙ [12]. We impose the constraint
m1 ≥ m2 which leads to Λ2 ≥ Λ1. For all our analyses, the
prior on the component spins is χ1;2 ∼ U½−0.05; 0.05�,
consistent with the expected spins of field binaries when
they enter the LIGO-Virgo sensitive band [35].
Results.—We perform parameter estimation for each

mass prior with and without the common EOS constraint
and calculate the Bayes factor—the ratio of the evidences
p(d⃗ðtÞjH)—between the common EOS constrained and
unconstrained analyses. We find Bayes factors B of 369,
125, and 612 for the three mass priors, respectively,

indicating that the data strongly favor the common EOS
constraint in all cases. The full posterior probability
densities of the parameters p(θ⃗jd⃗ðtÞ; H) for the common
EOS runs are shown in the Supplemental Material [18] and
are available for download at Ref. [36]. Figure 2 shows the
posterior probability densities for Λ1 and Λ2 with 90% and
50% credible region contours. Overlaid are q contours and
Λ̃ contours obtained from Eq. (1), Λ ≃ aβ−6, and R1 ≃
R2 ≃ R̂ as

Λ1ðΛ̃; qÞ ¼
13

16
Λ̃

q2ð1þ qÞ4
12q2 − 11qþ 12

; Λ2ðΛ̃; qÞ ¼ q−6Λ1:

ð9Þ
Because of our constraint Λ2 ≥ Λ1, our credible
contours are confined to the region where q ≤ 1. One
can easily demonstrate that Λ2 ≥ Λ1 is valid unless
ðc2=GÞdR=dm > 1, which is impossible for realistic equa-
tions of state. For the entire set of piecewise polytropes
satisfying mmax > 2M⊙ we considered, ðc2=GÞdR=dm
never exceeded 0.26. Even if a first order phase transition
appeared in stars with masses betweenm2 andm1, it would
necessarily be true that dR=dm < 0 across the transition.
Because of the q dependence of Λ1, Λ2, the credible region
enclosed by the contours broadens from the double neutron
star (most restricted), to the pulsar, to the uniform mass
(least restricted) priors. However, the upper bound of the
credible region is robust.
We find Λ̃ ¼ 205þ415

−167 for the uniform component mass
prior, Λ̃ ¼ 234þ452

−180 for the prior informed by double
neutron star binaries in the Galaxy, and Λ̃ ¼ 218þ445

−173 for
the prior informed by all Galactic neutron star masses
(errors represent 90% credible intervals). Our measurement
of Λ̃ appears to be robust to the choice of component mass
prior, within the (relatively large) statistical errors on its
measurement. The Bayes factors comparing the evidence

FIG. 2. Posterior probability densities for Λ1;2 with the common EOS constraint using uniform (left), double neutron stars (middle),
and Galactic neutron stars (right) component mass priors. The 50% and 90% credible region contours are shown as solid curves.
Overlaid are contours of Λ̃ (in magenta) and q (in gray). The values of Λ1 and Λ2 forbidden by causality have been excluded from the
posteriors.
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from the three mass priors are of order unity, so we cannot
claim any preference between the mass priors.
The 90% credible intervals on Λ̃ obtained from the

gravitational-wave observations include regions forbidden
by causality. Applying a constraint to our posteriors for the
causal lower limit of Λ as a function of m [37], we obtain
Λ̃ ¼ 222þ420

−138 for the uniform component mass prior, Λ̃ ¼
245þ453

−151 for the prior informed by double neutron star
binaries in the Galaxy, and Λ̃ ¼ 233þ448

−144 for the prior
informed by all Galactic neutron star masses (errors
represent 90% credible intervals). Using Eq. (6), we map
our M posteriors and Λ̃ posteriors (with the causal lower
limit applied) to R̂ ≃ R1.4 posteriors, allowing us to estimate
the common radius of the neutron stars for GW170817 for
each mass prior. Figure 3 shows the posterior probability
distribution for the binary tidal deformation Λ̃ and the
common radius R̂ of the neutron stars in the binary. Our
results suggest a radius R̂ ¼ 10.7þ2.1

−1.6 � 0.2 km (90%
credible interval, statistical and systematic errors) for the
uniform mass prior, R̂ ¼ 10.9þ2.1

−1.6 � 0.2 km for double
neutron star mass prior, and R̂ ¼ 10.8þ2.1

−1.6 � 0.2 km for
the prior based on all neutron star masses.
For the uniformmass prior, we computed theBayes factor

comparing a model with a prior Λs ∼U½0; 5000� to a model
with a prior Λs ∼U½0; 100�. We find log10ðBÞ ∼ 1, sug-
gesting that the data favors a model that includes measure-
ment of tidal deformability Λ̃≳ 100. However, the
evidences were calculated using thermodynamic integration
of the MCMC chains [9]. We will investigate model
selection using, e.g., nested sampling [44] in a future work.

Finally, we note the post-Newtonian waveform family
used will result in systematic errors in our measurement of
the tidal deformability [45,46]. However, this waveform
family allows a direct comparison to the results of Ref. [1].
Accurate modeling of the waveform is challenging, as the
errors in numerical simulations are comparable to the size
of the matter effects that we are trying to measure [47].
Waveform systematics and comparison of other waveform
models (e.g., [48]) will be investigated in a future work.
Discussion.—Using Bayesian parameter estimation, we

have measured the tidal deformability and common radius
of the neutron stars in GW170817. Table I summarizes our
findings. To compare to Ref. [1], which reports a 90%
upper limit on Λ̃ ≤ 800 under the assumption of a uniform
prior on Λ̃, we integrate the posterior for Λ̃ to obtain 90%
upper limits on Λ̃. For the common EOS analyses, these are
485, 521, and 516 for the uniform, double neutron star, and
Galactic neutron star component mass priors, respectively.
We find that, in comparison to the unconstrained analysis,
the common EOS assumption significantly reduces the
median value and 90% confidence upper bound of Λ̃ by
about 28% and 19%, respectively, for all three mass priors.
The difference between our common EOS results for the
three mass priors is consistent with the physics of the
gravitational waveform. At constant M, decreasing q
causes the binary to inspiral more quickly [49]. At constant
M and constant q, increasing Λ̃ also causes the binary to
inspiral more quickly, so there is a mild degeneracy
between q and Λ̃. The uniform mass prior allows the
largest range of mass ratios, so we can fit the data with a
larger q and smaller Λ̃. The double neutron star mass prior
allows the smallest range of mass ratios, and so, a larger Λ̃
is required to fit the data, with the Galactic neutron star
mass prior lying between these two cases.
Nevertheless, considering all analyses we performedwith

different mass prior choices, we find a relatively robust
measurement of the commonneutron star radiuswith amean
value hR̂i ¼ 10.8 km bounded above by R̂ < 13.2 km and
below by R̂ > 8.9 km. Nuclear theory and experiment
currently predict a somewhat smaller range by 2 km but

FIG. 3. The 90% credible region of the posterior probability for
the common radius R̂ and binary tidal deformability Λ̃ with the
common EOS constraint for the three mass priors. The posteriors
for the individual parameters are shown with dotted lines at the
5%, 50%, and 95% percentiles. The values of Λ̃, and hence, R̂
forbidden by causality have been excluded from the posteriors.

TABLE I. Results from parameter estimation analyses using
three different mass prior choices with the common EOS
constraint and applying the causal minimum constraint to
ΛðmÞ. We show 90% credible intervals for Λ̃, 90% credible
intervals and systematic errors for R̂, Bayes factors B comparing
our common EOS to the unconstrained results, and the 90%
upper limits on Λ̃.

Mass prior Λ̃ R̂ (km) B Λ̃90%

Uniform 222þ420
−138 10.7þ2.1

−1.6 � 0.2 369 < 485

Double neutron star 245þ453
−151 10.9þ2.1

−1.6 � 0.2 125 < 521

Galactic neutron star 233þ448
−144 10.8þ2.1

−1.6 � 0.2 612 < 516

PHYSICAL REVIEW LETTERS 121, 091102 (2018)

091102-4



with approximately the same centroid as our results [14,50].
A minimum radius 10.5–11 km is strongly supported by
neutron matter theory [51–53], the unitary gas [54], and
most nuclear experiments [14,50,55]. The only major
nuclear experiment that could indicate radii much larger
than 13 km is the PREX neutron skin measurement, but this
has published error bars much larger than previous analyses
based on antiproton data, charge radii of mirror nuclei, and
dipole resonances. Our results are consistent with photo-
spheric radius expansion measurements of x-ray binaries
which obtain R ≈ 10–12 km [12,56,57]. Reference [58]
found from an analysis of five neutron stars in quiescent
low-mass x-ray binaries a common neutron star radius
9.4� 1.2 km, but systematic effects including uncertainties
in interstellar absorption and the neutron stars’ atmospheric
compositions are large. Other analyses have inferred
12� 0.7 [59] and 12.3� 1.8 km [60] for the radii of
1.4M⊙ quiescent sources.
We have found that the relation q7.48 < Λ1=Λ2 < q5.76,

in fact, completely bounds the uncertainty for the range of
M relevant to GW170817, assuming m2 > 1M⊙ [37], and
that no strong first-order phase transitions occur near the
nuclear saturation density (i.e., the case in which m1

is a hybrid star and m2 is not). Analyses using this
prescription, instead of the q6 correlation, produce insig-
nificant differences in our results [61]. Since models with
the common EOS assumption are highly favored over those
without this assumption, our results support the absence of
a strong first-order phase transition in this mass range.
In this Letter, we have shown that, for binary neutron

star mergers consistent with observed double neutron star
systems [38], assuming a common EOS implies that
Λ1=Λ2 ≃ q6. We find evidence from GW170817 that favors
the common EOS interpretation compared to uncorrelated
deformabilities. Although previous studies have suggested
that measurement of the tidal deformability is sensitive to
the choice of mass prior [43], we find that varying the mass
priors does not significantly influence our conclusions,
suggesting that our results are robust to the choice of mass
prior. Our results support the conclusion that we find the
first evidence for finite size effects using gravitational-wave
observations.
Recently, the LIGO/Virgo collaborations have placed

new constraints on the radii of the neutron stars using
GW170817 [62]. The most direct comparison is between
our uniform mass prior result (R̂ ¼ 10.7þ2.1

−1.6 � 0.2) and the
LIGO/Virgo method that uses equation-of-state-insensitive
relations [63,64] (R1 ¼ 10.8þ2.0

−1.7 and R2 ¼ 10.7þ2.1
−1.5 km).

This result validates our approximation R1 ¼ R2 used to
motivate the prescription Λ1 ¼ q6Λ2, and Eqs. (3), (5). Our
statistical errors are comparable to the error reported by
LIGO/Virgo. Systematic errors from EOS physics of
�0.2 km are added as conservative bounds to our statistical
errors, broadening our measurement error, whereas
Ref. [62] marginalized over these errors in the analysis.

Reference [62] also investigates a method of directly
measuring the parameters of the EOS which results in
smaller measurement errors. Investigation of these
differences between our analysis and the latter approach
will be pursued in a future paper.
Observations of future binary neutron star mergers will

allow further constraints to be placed on the deformability
and radius, especially if these binaries have chirp masses
similar to GW170817 as radio observations suggest. As
more observations improve our knowledge of the neutron
star mass distribution, more precise mass-deformability
correlations can be used to further constrain the star’s
radius.
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