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We study quasiparticle excitations for quantum spin chains with long-range interactions using
variational matrix product state techniques. It is confirmed that the local quasiparticle ansatz is able to
capture those excitations very accurately, even when the correlation length becomes very large and in the
case of topological nontrivial excitation such as spinons. It is demonstrated that the breaking of the
Lieb-Robinson bound follows from the appearance of cusps in the dispersion relation, and evidence is
given for a crossover between different quasiparticles as the long-range interactions are tuned.
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In the last decades the research on low-dimensional
quantum matter has exploded thanks to experimental
advances in atomic, molecular, and optical physics on the
one hand, and a deepened theoretical understanding of the
quantum many-body problem on the other. In a recent
development the rich variety of exotic strongly correlated
quantum phases has increased even further as a result of
the experimental manipulation of quantum spin systems with
long-range interactions. These appear as, e.g., van der Waals
interactions between Rydberg atoms [1], dipole-dipole
interactions between atoms and molecules [2], and can even
be tuned in trapped-ion setups [3,4]. On the theoretical side
it has been realized that qualitatively new phenomena
can occur in the presence of long-range interactions.
For example, the Mermin-Wagner theorem [5] for one-
dimensional quantum systems can be avoided in the pres-
ence of long-range interactions, making the spontaneous
breaking of continuous symmetries possible down to zero
temperature [6]. An even more fundamental question con-
cerns the fate of the Lieb-Robinson bound [7] in systems
with long-range interactions. This bound implies that local
quantum lattice systems exhibit a linear light cone out of
which time-dependent correlation functions are suppressed
exponentially, and is the starting point for proving, e.g.,
area laws for entanglement entropy [8]. Although weaker
versions of the Lieb-Robinson bound have been proven for
power-law decaying interactions [9,10], it remains an open
question whether a (nonlinear) light cone emerges for
generic long-range interacting models [11–13].
For local Hamiltonians the key to understanding the low-

energy dynamics of generic spin chains is traditionally
provided by the notion of quasiparticles. Indeed, it was
recently proven (using Lieb-Robinson bounds) that
elementary excitations of gapped local Hamiltonians can

be created out of the ground state by a momentum super-
position of a local operator [14]. This suggests that all
low-energy excitations can be understood as localized
perturbations or quasiparticles on top of a possibly strongly
correlated ground state. Dynamical properties such as
structure factors, response functions, and quench dynamics
can then be understood through the properties of these
quasiparticles. In this light, the emergence of a light cone
is understood by a ballistic spreading of quasiparticles with
a given characteristic velocity [15,16].
When the interactions are no longer local, this quasi-

particle picture is no longer guaranteed to capture the low-
energy dynamics. Indeed, because of the absence of sharp
Lieb-Robinson bounds, sub- or superballistic propagation
through the system is possible, and it is a priori not
clear that quasiparticles provide an understanding of these
phenomena. Recently, though, there have been a few
attempts in that direction. Perturbative continuous unitary
transformations yield a quasiparticle description of excita-
tions [17], but require a trivial point to perturb from in the
same phase. In a semiclassical regime, spin-wave theory
provides a good approximation for the low-energy dynam-
ics in terms of the propagation of free magnons [18–20].
Alternatively, quadratic field theories might provide an
effective description of the system’s dynamics in certain
regimes [12]. In these approaches the nonlinear behavior of
the light cone can be traced back to nonanalyticities in the
quasiparticle dispersion relation. Still, a generic framework
for strongly interacting systems in the quantum regime is
lacking.
For local interactions, such a framework [21,22] was

developed using the language of matrix product states, and
provides a comprehensive understanding of low-energy
excitations in spin chains as quasiparticles. In this Letter we
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extend this framework to the case of long-range inter-
actions, and show that it continues to capture the relevant
low-energy degrees of freedom (d.o.f.).
The quasiparticle ansatz.—Our framework starts from

the formalism of matrix product states (MPS) [23–26], a
class of states that parametrizes the ground states of generic
quantum spin chains. In the thermodynamic limit, an MPS
can be represented graphically as

ð1Þ

i.e., the state is built up by concatenating different copies of
the same tensor A. The last index of each tensor is
contracted with the first index of the next one, whereas
the uncontracted indices correspond to the physical d.o.f.
in the spin chain. Because the same tensor is repeated on
every site in the chain the state is clearly translation
invariant, and the contraction of the virtual indices allows
for the state to exhibit strong quantum correlations. The
(highly nonlinear) manifold of matrix product states is
defined by all states of the above form, and we can find an
approximation of the ground state for a given Hamiltonian
by variationally optimizing the tensor A. If we approximate
all long-range interactions by a sum of exponentials—an
approximation that can be made arbitrarily precise, and
which we will always perform in the following—this
optimization can be done efficiently using the algorithm
in Ref. [27].
On this correlated background state, we can now build

quasiparticle excitations by introducing a variational ansatz
of the form [28]

ð2Þ

This ansatz is the momentum superposition of a local
perturbation of the ground state. All variational d.o.f. are
contained in the tensor B, and, since it acts on the virtual
d.o.f. of the matrix product state, the tensor can use the
correlations in the ground state to perturb the state over an
extended region. In that way, it can describe a dressed
quasiparticle—a lump on the strongly correlated back-
ground—within a specific momentum sector. Since the
ansatz state is linear in the tensor B and it can be easily
chosen to be orthogonal to the ground state, the variational
optimization amounts to solving an eigenvalue problem.
For both local and long-range interactions, this eigenvalue
problem can be implemented and solved efficiently, so that
we find the energies ωiðkÞ and states jΦkðBÞii of the
lowest-lying excitations within any momentum sector k.
This approach to describe dressed quasiparticles is

orthogonal to the perturbative approach in, e.g., Fermi-
liquid theory, where the quasiparticles are defined in a
noninteracting limit and assumed to remain well-defined

modes if the interactions are turned on. Indeed, we target
the exact eigenstates for an interacting system directly,
and, as such, describe stable quasiparticles—decays can be
treated by extending the formalism to multiparticle exci-
tations [21,22]. For local Hamiltonians this approach leads
to accurate results on the spectral properties of strongly
interacting spin chains [21,22,28], even in cases where the
quasiparticle properties cannot be perturbatively connected
to a noninteracting limit. In the following, wewill show that
this approach can be extended to systems with long-range
interactions.
Benchmarking the ansatz.—We will first test our

quasiparticle ansatz on two benchmark models. The first
is an extended long-range Ising (ELI) model defined by the
Hamiltonian

HELI ¼ −
X

i<j

1

ðj − iÞα σ
z
i

� Y

i<n<j

σxn

�
σzj − λ

X

i

σxi : ð3Þ

Because of the string of σx operators in the interaction term,
this model can be mapped to a system of free electrons,
for which the excitation spectrum can be computed exactly.
In Fig. 1 we have plotted the dispersion relation as obtained
by the quasiparticle ansatz, and compared to the exact
solution. We see perfect agreement for different values of
α, and we can accurately resolve a cusp in the dispersion
relation for α < 2.
The second test case is the long-range Heisenberg model

as defined by

HHeis ¼
X

i<j

1

ðj − iÞα ðσ
x
i σ

x
j þ σyi σ

y
j þ σziσ

z
jÞ: ð4Þ

For α → ∞ this system reduces to the well-known
Heisenberg model, whereas for α ¼ 2 we recover the

FIG. 1. The dispersion relation of the extended long-range Ising
model [Eq. (3)] with the quasiparticle ansatz (markers) compared
to the exact solution (lines) for λ ¼ 10 and a set of values for the
long-range interaction: α ¼ 100 (purple), α ¼ 4 (yellow), α ¼ 2
(red), and α ¼ 1.5 (blue). In order to compare the dispersion
relations on the same plot, we have rescaled the energy by the
factor ηðα; λÞ ¼ P

n>1n
−α þ λ.
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Haldane-Shastry model [29,30]. For both cases the exci-
tation spectrum can be determined exactly with the Bethe
ansatz, but for all other α the model loses integrability.
From the Bethe ansatz it is well known that the elementary
excitations have a topological nature [31]—they are so-
called spinons—but we can easily extend our quasiparticle
ansatz to also capture these topological excitations [28].
In Fig. 2 we have plotted the spinon dispersion relation
for three values of α, and compared with the two exact
solutions. Again, we see that we reproduce the dispersion
relation accurately, and, more interestingly, there is no cusp
for α < 2. This can be expected since the long-range
interactions are frustrating in this case and, therefore, do
not present a relevant perturbation on the nearest-neighbor
interaction for all α > 1 [32–34].
Long-range Ising model.—Let us now study the proto-

typical long-range interacting spin chain, the transverse-
field Ising (LTI) model

HLTI ¼ −
X

i<j

σziσ
z
j

ðj − iÞα − λ
X

i

σxi : ð5Þ

In the nearest-neighbor limit (α → ∞) this model exhibits a
second-order quantum phase transition at λc ¼ 1 from a
ferromagnetic (λ < 1) to a paramagnetic (λ > 1) state [36].
This phase transition persists if the long-range interactions
are turned on, but the critical value λcðαÞ shifts to higher
values. Deep in the paramagnetic phase, we expect that
linear spin-wave theory yields a good approximation of the
dynamical properties [11,18,19], but with the quasiparticle
ansatz we can study to what extent this spin-wave picture
continues to hold when approaching the critical point.
Although the phase diagram remains qualitatively the same,
the long-range interactions induce correlation functions
with power-law decay in the ground state even away from
criticality [37].

In Fig. 3 our results for the Ising model are presented.
In the inset we show that the ground-state correlations in
our MPS simulation accurately reproduce the correct
power-law decay. Building on this ground state, our
quasiparticle ansatz reproduces the cusp in the dispersion
relation for small momenta (for higher momenta the

FIG. 2. The spinon dispersion relation of the long-range
Heisenberg model as computed with the quasiparticle ansatz
for α ¼ 100 (yellow), α ¼ 2 (red), and α ¼ 1.5 (blue). The full
lines are the exact results for the nearest-neighbor model [31]
and the Haldane-Shastry model [35]. The momentum of a single
spinon in the thermodynamic limit is defined up to a constant
shift, which we have fixed according to Ref. [35].

FIG. 3. The dispersion relation for the long-range Ising model
[Eq. (5)] computed with the quasiparticle ansatz (markers), and
compared with spin-wave theory (lines) for α ¼ 1.5 and λ ¼ 5.2
(blue), λ ¼ 6 (red), λ ¼ 7 (yellow), λ ¼ 8 (purple), and λ ¼ 15
(green). Again, the energy has been rescaled by the factor ηðα; λÞ.
For reference, the inset contains the ground-state correlation
function CzzðnÞ ¼ hσznσz0i for α ¼ 1.5, λ ¼ 10 (blue), and λ ¼ 6

(red), showing power-law decay CzzðnÞ ∝ n−γ with powers γ ≈
1.47 and γ ≈ 1.37, respectively; we obtain significant deviations
from the spin-wave result (for which γ equals α [37]), in
agreement with Ref. [38]. For very long distances, the MPS
approximation induces an exponential decay.

FIG. 4. A close-up of the dispersion relation of the Ising model
[Eq. (5)] computed with the quasiparticle ansatz (markers) for
two values of ðα; λÞ close to the critical point: (1.5,4.8) (blue) and
(2.875,1.586) (red). The lines are fits to the universal long-
wavelength form in Eq. (6). Again, the energy has been rescaled
by the factor ηðα; λÞ.
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dispersion flattens out further). We observe that for large λ
our results coincide with spin-wave theory, but the latter
induces significant errors when lowering λ. In particular,
using the closing of the gap as a criterion, we find different
values for the critical point; e.g., we find a closing of the
gap at λc ≈ 4.70 for α ¼ 1.5, whereas spin-wave theory
predicts the considerably larger value λc ¼ 5.22.
In order to study the cusp in more detail we have plotted

a close-up for two values of α and corresponding values of
λ close to the critical value λcðαÞ. Spin-wave theory
suggests that we should find a dispersion relation in the
long-wavelength limit

ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ akα−1 þ bk2

p
; k → 0; ð6Þ

where Δ is the gap. As we have seen in Fig. 3 the gap Δ is
shifted considerably from the spin-wave result, but, as we
can see from Fig. 4, the universal form of the cusp in the
dispersion relation remains correct. Therefore, we expect
that the cusp’s signature in the quench dynamics [12,19] is
visible deep in the interacting regime as well.
On the other side of the phase transition, in the

symmetry-broken phase, the elementary excitations can
have a topological nature. Indeed, in the nearest-neighbor
limit it is known that the low-energy quasiparticles are
domain walls between the two symmetry-broken ground-
state configurations [36]. Upon lowering α, however, the
long-range interactions will induce an increasing energy
cost associated with the two ground-state configurations
across the domain wall. Therefore, we expect that another
nontopological quasiparticle excitation will, for small
enough α, have lower energy and dominate the low-energy
behavior of the system, whereas the domain wall persists as
a stable but heavier quasiparticle. In Fig. 5 we have plotted
the gap of both the domain wall and the local excitation as a
function of α for three values of the magnetic field, showing
that the crossover between the two gaps occurs around
α ≈ 2.3–2.4. We expect this crossover to have drastic

effects on the quench dynamics of this model, as these
dynamics are assumed to be determined by the spreading
of the lowest-lying quasiparticles [15,16]. For example, the
value of α roughly coincides with the region where an
anomalous dynamical phase transition occurs [39,40],
which suggests that this crossover between topological
and trivial quasiparticles provides the physical origin of this
phenomenon.
XXZ model.—Finally, we study the XXZ model as

defined by the Hamiltonian

HXXZ ¼
X

i<j

1

ðj − iÞα ð−σ
x
i σ

x
j − σyi σ

y
j þ Δσziσ

z
jÞ: ð7Þ

In the region jΔj < 1 and for large α the model is in the
Luttinger-liquid phase, whereas the continuous Uð1Þ sym-
metry is broken for small enough α [6]. Although this
transition is hard to see in standard MPS simulations, it is
nicely visible in the spectrum: for the Luttinger liquid the
excitations have a linear dispersion (z ¼ 1), whereas in the
symmetry-broken phase the spectrum consists of Goldstone
modes with a cusp in the dispersion relation (z < 1).
In Fig. 6 we have plotted our results for the dispersion
relation at α ¼ 2 (in the symmetry-broken phase), and fitted
this to the form in Eq. (6) with Δ ¼ 0. In the long-
wavelength limit only the term ωðkÞ ∝ kðα−1Þ=2 is expected
to survive, but this appears to be a poor fit on the
momentum range that we have considered in Fig. 6.
Instead, it appears that we could nicely fit a pure power
law ωðkÞ ∝ kz to the numerical data with the exponent
z ¼ 0.5205ð11Þ. This allows us to define an effective
dynamic critical exponent, which captures the cusp in
the dispersion relation for a significant portion of the
Brillouin zone, and which is expected to determine the
correlation spreading in this system.
Conclusions.—In this Letter we have computed the

dispersion relations of a number of gapped and gapless

FIG. 5. The gap for the “topological” excitation (striped) and
for the “trivial” excitation (full) as a function of α for three
different values of the magnetic field: λ ¼ 0.25 (blue), λ ¼ 0.5
(red), and λ ¼ 0.75 (yellow).

FIG. 6. Dispersion relation for the XXZ model [Eq. (7)] with
Δ ¼ 0 and α ¼ 2 with the quasiparticle ansatz, and compared to
the form ωðkÞ ¼ ðakα−1 þ bk2Þ1=2 (purple) and the form ωðkÞ ¼
azk (yellow). We have extended the range of the figure in order to
see the deviation of the two fits.

PHYSICAL REVIEW LETTERS 121, 090603 (2018)

090603-4



quantum spin chains with long-range interactions using a
variational ansatz with an explicit quasiparticle nature. The
accuracy of these computations shows that quasiparticles
continue to capture the low-energy d.o.f. in strongly
correlated regimes, and provide the key to understanding
all low-energy dynamical properties. In particular, we have
shown that these quasiparticles can exhibit unexpected
properties—cusps in the quasiparticle dispersion, the cross-
over between trivial and topological particles, and the
emergence of an effective dynamical critical exponent
are points in case.
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