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Quantum mechanics allows events to happen with no definite causal order: this can be verified by
measuring a causal witness, in the same way that an entanglement witness verifies entanglement. Here, we
realize a photonic quantum switch, where two operations Â and B̂ act in a quantum superposition of their
two possible orders. The operations are on the transverse spatial mode of the photons; polarization
coherently controls their order. Our implementation ensures that the operations cannot be distinguished by
spatial or temporal position—further it allows qudit encoding in the target. We confirm our quantum switch
has no definite causal order by constructing a causal witness and measuring its value to be 18 standard
deviations beyond the definite-order bound.
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In daily experience, it is natural to think of events
happening in a fixed causal order. Strikingly, it has been
proposed that quantum physics allows for nonclassical
causal structures where the order of events is indefinite
[1,2]. It has been theoretically shown that such a possibility
provides an advantage for computation [3], communication
complexity [4,5], and other information processing
tasks [6–8]. Furthermore, investigations of indefinite causal
orders suggest a promising route towards a theory that
combines general relativity and quantum mechanics [9,10].
Indefinite causal orders can be studied using a framework

that distinguishes whether some experimental situation—
called a “process”—is compatiblewith a fixed causal order of
the events or not. An example of a process with indefinite
causal order is the “quantum switch” [1]. In the quantum
switch, the order in which two quantum operation Â and B̂—
considered as “black box operations”—are performed on a
target system is coherently controlled by a control quantum
system (Fig. 1). This can also be seen as a particular case of
“superposition of time evolution” [11]. The advantages
provided by the quantum switch arise from the fact that it
cannot be reproduced by an ordinary quantum circuit which
uses the same number of black box operations [3–7].
Here, we present an optical implementation of the

quantum switch where the control system is the photon’s
polarization and the target is the transverse spatial mode.
We verify indefinite causal order by introducing a causal
witness [14,15], for which we obtain a value 18 standard
deviations beyond the bound for definite ordering. One
notable achievement of our experiment is that it opens the
possibility of encoding more than two levels in the target
system—transverse spatial mode can indeed be high-
dimensional and hence can act as a qudit.
In previous implementations [12,13], the location of

each black box—the spot where photons go through a set of

wave plates—was different depending on the order, resulting
in four distinct locations in space [Fig. 1(c)]. Furthermore,
the photons had a coherence length much shorter than the
distance between the two sets of wave plates: in effect, the
operations could also be distinct in time. In our experiment,
we use polarization to control the order, so that the paths
corresponding to different temporal orders overlap in space,
resulting in only two spatial locations, as in Fig. 1(d). The
location of the two operations also cannot be distinguished in
time, aswe use photonswith a coherence lengthmuch longer
than the whole interferometer. Therefore, in our experiment
the causal order between operations cannot be distinguished,
even in principle, by their spacetime location.
Much of the interest in the quantum switch comes from the

possibility of representing a novel—genuinely quantum—
type of causal structure. In this context, causal relations
are defined through the possibility of transmitting signals
between events. An “event” is understood operationally in
terms of operations such as measurements, preparations,
or transformations of a physical system (for example, a
photon transiting a set of lenses can define an event).
A “causal structure” represents the network of possible
causal relations between a set of events. Relativistic causal
structure naturally falls within this perspective: if an event
A is in the past light cone of an event B, it is possible
to send a signal from A to B, while no signal exchange is
allowed for spacelike separated events. Note that even if
no direct causal influence between certain events is
detected in a given experiment it might still be possible
to deduce information about the causal structure in which
the events are embedded. For example, one can perform
transformations on a system at the prescribed events and,
by measuring the system at a later event, deduce infor-
mation about the order in which the transformations were
applied. Our experiment uses this idea.
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Since the notion of a causal structure refers to how
different operations on physical systems relate to each
other, distinct definitions are available depending on the
level of description of these operations and of the physical
systems. Recent literature [2,14–17] has analyzed the
quantum causal structure of the quantum switch using a
theory- and device-dependent approach: we follow this
here. The possible operations defining an event A are
identified with the most general quantum operations:
completely positive (CP) maps are from an input space
AI ≡ LðHAIÞ to an output space AO ≡ LðHAOÞ, where
LðHÞ denotes the space of linear operators over a Hilbert
spaceH and AI, AO label the spaces attached to the system
immediately before and after the operation, respectively.
Using the Choi-Jamiołkowski isomorphism [18,19], we
represent a CP map as a positive semidefinite operator
MA ∈ AI ⊗ AO. The probability to realize the maps
fMA;MB;…g in an experiment, corresponding to events
A;B;…, is given by the “generalized Born rule” [2,20–22],

PðMA;MB;…Þ ¼ Tr½ðMA ⊗ MB ⊗ …ÞW�; ð1Þ

where W ∈ AI ⊗ AO ⊗ BI ⊗ BO ⊗ … is a positive semi-
definite matrix called a “process matrix,” which provides a
full specification of the possible correlations that can be
observed. In particular, W encodes the causal structure,
namely, which events can potentially influence which other
events.
Three events A, B, and Cmust be identified in a quantum

switch:A andB correspond to operations on the target system
implemented along the two arms of the interferometer, while
C (not shown in Fig. 1; see Fig. 2) is a measurement of the
control system that occurs after both events A and B.
A process matrix compatible with A causally preceding B
is denoted WA≺B≺C; a process matrix with B preceding A is
denotedWB≺A≺C. If a causal order between the events is well
defined for each run of the experiment, possibly changing
randomly between different runs, then the process matrix is
said to be “causally separable” [2,14,16,23], and it can be
decomposed in the form

Wsep ¼ qWA≺B≺C þ ð1 − qÞWB≺A≺C; ð2Þ

where 0 ≤ q ≤ 1.
Our task is to experimentally verify an indefinite causal

order, namely, that the process matrix describing our
experiment cannot be decomposed as in Eq. (2). We
achieve this by measuring a “causal witness” [14,15].
This is defined as a Hermitian operator S such that its
expectation value is
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FIG. 2. Experimental schematic. The control qubit is defined by
polarization. The polarizing beam splitter PBS1 routes the photon
into either events A or B, which realize unitary operations Â or B̂
acting on the spatial mode of the photon. Event C is a X̂
polarization measurement, determining the Stokes parameter of
the photon in the diagonal/antidiagonal basis. Lenses L1 and L2
are used as a telescope to ensure mode matching.
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FIG. 1. The quantum switch. A control qubit determines the
order in which two quantum operations Â and B̂ are applied to a
target qubit, jψit. (a) When the control is j0ic, Â is applied before
B̂. (b) When the control j1ic, B̂ is applied before Â. When the
control is in the superposition ðj0i þ j1iÞc=

ffiffiffi
2

p
, there is a super-

position of the two orders, yielding the output state jϕi ¼
ðB̂ Â jψit ⊗ j0ic þ Â B̂ jψit ⊗ j1icÞ=

ffiffiffi
2

p
. (c) In Refs. [12,13],

the control is the transverse position at which a photon passes
through a set of wave plates—consequently, the operations are
performed in distinct spatial locations depending on the order.
(d) In our experiment, the control is polarization; hence, each
operation takes place in a fixed spatial location, independent of the
order. The yellow pulses are graphical representations of the
difference in temporal characteristics: In (c), the pulses are
orders-of-magnitude shorter than the experiment and its internal
components; in (d), the pulses are orders-of-magnitude longer so
that the operations are indistinguishable in time as well as space.
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hSi ¼ Tr½SWsep� ≥ 0 ð3Þ

for every causally separable process matrixWsep. Detecting
a value hSi ¼ Tr½SW� < 0 therefore certifies that W is
“causally nonseparable.”
Notice that the value of Tr½SW� can be obtained

experimentally after decomposing S into different operators
representing different CP maps (which define the events A,
B, C) and using Eq. (1) to write Tr½SW� as a combination
of the joint probabilities of these maps to be realized. In
our experiment, we use a causal witness that can be
measured by letting events A and B correspond to unitary
operations Â and B̂, respectively, and event C to a
polarization measurement of the control qubit in the
diagonal/antidiagonal basis—i.e., a measurement of a
Stokes parameter, or equivalently of the Pauli observable
X̂. Such a witness can be decomposed as

S ¼ 1

4

�
Î þ

X
Â;B̂

γÂ;B̂A ⊗ B ⊗ X̂

�
; ð4Þ

where Î denotes the identity operator, A is the Choi
representation of a unitary Â, defined as A ≔ ðPlmjli
hmj ⊗ ÂjlihmjÂ†ÞT (where subscript T denotes transposi-
tion in the computational basis fjlig ofHAI and some fixed
basis ofHAO), similarly for B, and where the sum runs over
the sets of unitaries Â, B̂ used in the experiment. The
normalization factor 1

4
is chosen so that the value of

−Tr½SW�, when positive (i.e., when Tr½SW� < 0), corre-
sponds precisely to the amount of white noise that can be
added to W before it becomes causally separable—its
“random robustness” [14,15]—and the coefficients γÂ;B̂
are determined numerically through the optimization
method described in the Supplemental Material [24].
The value we need to measure is then

hSi ¼ Tr

�
1

4

�
Î þ

X
Â;B̂

γÂ;B̂A ⊗ B ⊗ X̂

�
Wexp

�

¼ 1þ 1

4

X
Â;B̂

γÂ;B̂hX̂iÂ;B̂; ð5Þ

whereWexp is the process matrix describing our experiment
(properly normalized so that TrWexp ¼ 4 for our quantum
switch [14–16]) and hX̂iÂ;B̂ is the expectation value of the

observable X̂ given that Â and B̂ have been performed. If
hSi is found to be negative, it means that our implementa-
tion of the quantum switch has successfully realized an
indefinite causal order between the events A and B.
To avoid the issue of spatial separation in Refs. [12,13],

we use polarization as the control qubit for the order of
black boxes and the transverse spatial mode of the photons
as our target qubit. With this encoding, there is a single

optical axis throughout the quantum switch, meaning
that each black box cannot be spatially split into two.
Furthermore, we achieve temporal indistinguishability by
using photons of long coherence length. The spatial
separation between input of black box A and output of
black box B in Fig. 2 is 3.5 m and two orders of magnitude
shorter than the coherence length of our light source which
is 955 m, such that no significant timing information can be
derived.
Our light source is a diagonally polarized, 100 kHz

linewidth laser beam at 795 nm, in the lowest-order
transverse spatial mode, the Hermite-Gaussian mode
HG00. We transform the beam into a HG10 spatial mode
by first passing the beam through an element that adds a π
phase to half of the beam—a cover slip on a tip-tilt mount
that spans half of the beam. The resulting spatial mode is a
superposition of odd-order Hermite-Gaussian modes [25].
We then use spatial Fourier filtering to remove most of the
higher-order spatial modes leaving just the HG10 mode.
The qubit space of the target system consists of first-order
spatial modes, where we define j0i ¼ jHG10i, and j1i ¼
jHG01i. The initial state of jψit (Fig. 1) is taken to be j0i.
A polarizing beam splitter (PBS1) splits the beam into

the top and bottom arms of an interferometer (see Fig. 2).
The unitary operations in these arms Â and B̂ act on the
transverse spatial mode but should, ideally, not change the
polarization of the beam. The top and bottom arms are
combined at the output polarizing beam splitter PBS2,
and the resulting mode is sent back to the other input of
PBS1. This relay arm contains a telescope to ensure mode
matching, i.e., that the spatial mode that re-enters the
interferometer is the same as the input spatial mode.
We realize the unitary operations Â and B̂ using a

combination of inverting prisms [26] and cylindrical lenses
[27,28] as shown in Fig. 3. The inverting prisms rotate the
incoming spatial mode. Unlike Dove prisms which act
as poor polarizers [29], an inverting prism also acts
approximately as a quarter-wave plate on polarization
[26], which we compensate using a combination of quarter-
and half-wave plates.
Transformations for spatial modes require more optical

elements than transformations for polarization; hence, in
constructing the witness, we considered a tradeoff between
its robustness to noise and the number of elements required
to measure it in our setup. For this reason, in our experi-
ment, each operation Â and B̂ is chosen among one of
the following six unitaries acting on the transverse spatial
mode: the identity operation Î, the three Pauli operators X̂,
Ŷ, and Ẑ, and the two linear combinations P̂ ¼ ðŶ þ ẐÞ=ffiffiffi
2

p
and Q̂ ¼ ðX̂ þ ẐÞ= ffiffiffi

2
p

. These operations produce
spatial modes that are either first-order Hermite-Gaussian
or first-order Laguerre-Gaussian modes, thus keeping the
spatial mode in the fjHG10i; jHG01ig qubit subspace.
Figure 4 illustrates the resulting spatial modes for an input
target qubit in the HG10 mode.
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At the interferometer output, after PBS2, event C
corresponds to a polarization measurement in the diagonal
or antidiagonal basis—a measurement of the Stokes para-
meter corresponding to hX̂i—selected using a half-wave
plate and a third polarizing beam splitter. Because of
experimental imperfections in the optical elements, the
output mode has a marked transverse interference pattern,
typically with two to three fringes. An iris is used to collect
only light from one fringe, and this is then collected by a
multimode fiber connected to a single-photon detector, thus
tracing out the spatial mode of the photons.
For our witness, there are 21 combinations of Â and B̂ for

which the coefficient γÂ;B̂ is nonzero (see Supplemental
Material [24]). Figure 5 shows the measured Stokes values
hX̂iÂ;B̂ for each of these combinations: The red bars are
the theoretically expected values, which should all be þ1,
−1, or 0; the blue bars are the values measured in our
experiment.
There are two main sources of errors in our experiment:

rotational misalignments and imperfect mode matching. The
inverting prisms are mounted on manual rotation stages with
uncertainty in an angular position of 1°. Our witness is robust
against these misalignments: accounting for these errors, one
can derive a new corrected bound for causally separable
processes, which we find to be close enough to zero that we
still have room to obtain an experimental value below it (see
Supplemental Material [24]). The imperfect mode matching

degrades the visibility of the interference of the spatial
modes, which is then reflected in the values of the Stokes
parameters that we obtain. We have modeled these imper-
fections and predict an expectation value for our causal
witness within the range of −0.20≲ hSi≲ −0.14, c.f., the
ideal value of hSi ≃ −0.248.
We measure hSi ¼ −0.171� 0.009, within our expected

range, and a value that is 18 standard deviations from the
bound hSi ≥ 0 satisfied by all causally separable processes.
Taking into account misalignment errors, the measured
value is still 14 standard deviations below the—most
conservative—corrected bound of hSi ≥ −0.038 for caus-
ally separable processes (obtained in the Supplemental
Material [24]). This confirms that the measured process is
causally nonseparable: it has no definite causal order.
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FIG. 4. Spatial transformations. The result of the unitaries
acting on an input spatial mode of HG10 are also first-order spatial
modes.

FIG. 5. Stokes parameters hX̂iÂ;B̂ obtained by measuring the
polarization of the output control qubit in the diagonal basis. The
red bars show the ideal, theoretical values, and the blue bars are
the experimentally measured values. The unitary combinations
are defined by combining the unitary operations at the top arm (Â)
and the bottom (B̂) arm, maintaining the order Î, X̂, Ŷ, Ẑ, P̂ ¼
ðŶ þ ẐÞ= ffiffiffi

2
p

and Q̂ ¼ ðX̂ þ ẐÞ= ffiffiffi
2

p
. A Stokes parameter of þ1

means the output is diagonally polarized light, −1 means it is
antidiagonally polarized light. 1σ errors are too small to be visible
in the plot.

FIG. 3. Top view of the setup for realizing the unitary operations Â and B̂ using a set of special inverting prisms R and pairs of
cylindrical lenses C. The prisms rotate the incoming transverse mode, effectively implementing the rotation RðθÞ ¼ ðcos 2θsin 2θ

sin 2θ
− cos 2θÞ in the

fjHG10i; jHG01ig qubit subspace. The cylindrical lenses give a π=2 relative phase shift to Hermite-Gaussian components of the
incoming photon, effectively implementing Cðπ=2Þ ¼ ð1

0
0
iÞ. The spherical lenses (L) are used for mode matching. The half-wave plates

(H) and quarter-wave plates (Q) are used to correct polarization changes caused by reflections in the prisms, and φ represents a phase
plate. The unitary operations of our interest are realized by varying the angles θ1 and θ2. For example, in the figure Rðθ1Þ is rotated by
45°, and for Rðθ2Þ, the angle is set at 0°. With a 0° global phase, the above setup represents an X̂ operation which transforms an input
Hermite-Gaussian HG10 beam to a Hermite-Gaussian HG01 (see Supplemental Material [24], which includes [30]).
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The control and target systems in our experiment are
encoded—as in previous experiments [12,13,31]—on differ-
ent degrees of freedom (d.o.f.) of a single particle. As in all
experiments, there are nonideal aspects, which we detail in
the Supplemental Material [24]. Our experiment—and those
of Refs. [12,13]—do not overtly suffer from these nonideal
aspects as can be seen by the high visibility observed in all
implementations. The high visibility ensures the target
operations are sufficiently similar for different control states
and that there is no net operation on the control.
Our architecture offers promising routes for further

experimental investigations. Having polarization as the
control d.o.f. enables for instance using polarization
entanglement—which can be of very high quality, e.g.,
reaching a tangle of T ≃ 0.987 [32]—as the control for
entangling the causal order of different quantum switches
[10,31]. Having transverse spatial modes as the target d.o.f.
enables encoding qudits—as opposed to qubits—for inves-
tigating quantum communication with indefinite causal order
in larger Hilbert space dimensions [5,8]. The benefits of using
qudits for quantum information processing applications, such
as improved security in quantum cryptography and higher
information capacity in quantum communication, are well
known [33,34].Moreover, certain protocols demonstrating an
advantage from indefinite causal order will require qudits for
their implementation [5,8]. Our implementation thus offers
the possibility of exploring these advantages in the future.
Other challenges include realizing quantum switches that put
more than two events in an indefinite causal order and
physically separating the control and target systems, so that
the parties’ actions on the target system for different control
states cannot be distinguished even in principle.
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