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We study Josephson oscillations of two strongly correlated one-dimensional bosonic clouds separated
by a localized barrier. Using a quantum-Langevin approach and the exact Tonks-Girardeau solution in
the impenetrable-boson limit, we determine the dynamical evolution of the particle-number imbalance,
displaying an effective damping of the Josephson oscillations which depends on barrier height, interaction
strength, and temperature. We show that the damping originates from the quantum and thermal fluctuations
intrinsically present in the strongly correlated gas. Because of the density-phase duality of the model, the
same results apply to particle-current oscillations in a one-dimensional ring where a weak barrier couples
different angular momentum states.
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The Josephson effect was discovered in 1962 [1] when
analyzing the dynamics of two superconductors coupled
by a thin layer of insulating material. It is one of the most
clear manifestations of macroscopic quantum coherence: its
dynamical behavior, based on quantum tunneling, is fixed
by the relative phase between the superconductors and has
played a crucial role in the development of technological
applications of superconductor materials [2].
In ultracold atomic gases, the Josephson effect has been

predicted [3,4] and experimentally observed in Bose–
Einstein condensates trapped in a double-well potential
(external Josephson effect [5–7]) or belonging to two,
Raman-coupled, internal states (internal Josephson effect
[8,9]). Josephson oscillations were also observed in paired
atomic Fermi gases [10,11]. In Bose-Josephson junctions,
the interplay between tunneling and repulsive interactions
gives rise to various dynamical regimes [4,12,13], such as
Rabi [14] and Josephson [5,15,16] oscillations as well as
macroscopic quantum self-trapping [4,5]. Weakly coupled
Bose gases are key elements in the development of quantum
technologies based on ultracold atoms, e.g., matter-wave
interferometers [15,17] and sensors [18], as well as quantum
computers [19,20] and atomtronics devices [21–23].
The theoretical description of Bose-Josephson junctions

is generally based on a two-mode model: at mean field
level, a two-mode Gross-Pitaevskii equation predicts
Josephson oscillations as well as macroscopic quantum
self-trapping [4,12,13]. A quantum description based on
the two-mode Bose-Hubbard model allows us to capture
squeezing [24,25], quantum self-trapping [26], and the
formation of macroscopic superposition states [27].
Theories beyond the two-mode model show that the latter
may provide inaccurate values for the Josephson-plasma
frequency [28], overestimate the coherence [29] as well as

the self-trapping effect [30–32], and report collapse and
revivals of Josephson oscillations [33].
The Josephson effect becomes particularly intriguing

when the quantum character of the Bose gas emerges,
beyond the two-mode model description. Low dimensional
systems provide an ideal geometry to study the quantum
behavior of Bose-Josephson junctions, since quantum fluc-
tuations and correlation effects are enhanced. The strongly
correlated regime for atomic gases trapped in quasi-one-
dimensional waveguides has been reached [34,35] and
largely studied experimentally [34,36–40].
In the present work, we focus on the Josephson

dynamics among two strongly correlated one-dimensional
bosonic systems coupled head-to-tail through a weak link,
as depicted in Fig. 1(a). This geometry is complementary
to the one of Refs. [36,40,41], where two parallel one-
dimensional wires were considered, and damped Josephson
oscillations [40] were observed. In the present case, atom
tunnelling between the two wires occurs only through a
very small region of both clouds, and using the Luttinger-
liquid (LL) effective theory, we show that the remaining
part of the elongated clouds act as effective baths due to
their low-energy phononlike excitations and provides an
effective damping of the Josephson oscillations. An exact
solution in the fermionized Tonks-Girardeau limit allows us
then to obtain the full dynamical behavior following a
quench in the external potential, thus offering an insight on
the type of excitations contributing to the oscillations and
their damping.
Exploiting the duality of the Luttinger-liquid model, our

theoretical framework allows us also to describe bosons in a
one-dimensional ring with a weak barrier under a gauge
field, e.g., due to barrier stirring, in which we predict
damping in the current oscillations following an initial
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quench. Experimental progresses towards the realization of
such a system have been reported [42–49], although the
one-dimensional regime has not yet been reached.
We start by considering two tunnel-coupled, strongly

interacting, one-dimensional bosonic fluids, each confined
within a tight waveguide of length L. To describe the
system at intermediate and large interactions, we use the
Luttinger-liquid low-energy theory, corresponding to a
quantum hydrodynamic theory for density and phase
fluctuations (see, e.g., [50]). The total Hamiltonian is given
by two Luttinger liquids, ĤLL�, with þ and − for the right
and left waveguides, respectively, coupled by a tunnel term,
yielding a special limit of a boundary sine-Gordon model
(see [51] and Refs. therein):

ĤLL� ¼ ℏv�K�
2π

Z
L

0

dx

�
½∂xφ̂�ðxÞ�2 þ

1

K2
�
½∂xθ̂�ðxÞ�2

�

ð1Þ

Ĥt ¼ −EJ cos½φ̂þð0þÞ − φ̂−ð0−Þ�; ð2Þ

where ∂xθ̂�ðxÞ=π is the density-fluctuation field operator,
conjugate to the phase operator φ̂�ðxÞ, fulfilling ½∂xθ̂�ðxÞ=
π; φ̂�ðx0Þ� ¼ −iδðx − x0Þ [52]. The LL Hamiltonians (1) are
expressed in terms of two parameters, the velocities v� of
the low-energy excitations and the dimensionless Luttinger
parameters K�, related to the compressibility of each cloud
[50]. In the following, we assume for simplicity that the
two atomic waveguides are identical and set vþ ¼ v− ¼ v
and Kþ ¼ K− ¼ K. The tunnel Hamiltonian Ĥt describes
the presence of a large, localized barrier whose microscopic
parameters determine the Josephson energy EJ (see,
e.g., [53]).

We proceed by representing the Hamiltonians (1) and (2)
on the normal modes basis of each Luttinger liquid, namely,
the zero modes N̂�, counting the particle number in each
waveguide and their conjugates phases ϕ̂0�, as well as the
position Q̂μ� and momentum P̂μ� operators for each
excitation with wave vector kμ ¼ πμ=L and frequency
Ωμ ¼ vkμ. We then focus on the relative-variable problem,
which is nonquadratic due to the tunnel barrier term (2),
and we introduce N̂≡ 1

2
ðN̂þ−N̂−Þ, ϕ̂0 ≡ ϕ̂0þ − ϕ̂0− for the

zero modes and Q̂μ ≡ Q̂μþ − Q̂μ− and P̂μ ≡ 1
2
ðP̂μþ − P̂μ−Þ

for the excited modes. The resulting Hamiltonian reads (see
the Supplemental Material [54])

Ĥrel
T ¼ ℏ2

2ML2
ðN̂ − NexÞ2 − EJ cosðϕ̂0Þ

þ
X
μ≥1

�
1

2M

�
P̂μ þ

ffiffiffi
2

p
ℏ

L
ðN̂ − NexÞ

�2

þ 1

2
MΩ2

μQ̂
2
μ

�
;

ð3Þ

with effective massM ¼ ℏK=2πvL ¼ K2m=2π2N0, N0 the
average particle number in each tube, and Nex ≪ N0 the
excitation imbalance, which may be tuned by a suitable
choice of the initial conditions. We identify in Eq. (3) a
quantum particle term corresponding to the two collective
variables N̂ and ϕ̂0, a bath of harmonic oscillators formed by
the excited modes, and a coupling term ∝ P̂μN̂, obtained by
expanding the second line of Eq. (3). The same structure is
found in the Caldeira-Leggett Hamiltonian [55–57]; how-
ever, in our model, the bath of harmonic oscillators is
intrinsic in the model, originated from the phonon excita-
tions in the Bose fluid, while in the Caldeira-Leggett model it
is phenomenologically introduced. The first line of Eq. (3)
corresponds to the familiar Josephson Hamiltonian, where
two regimes are possible depending on the ratio of the
Josephson EJ and kinetic EQ ¼ ℏ2=ML2 ¼ 2ΔE=K ener-
gies, with ΔE ¼ ℏπv=L being the level spacing among
phonon modes of the bath. Notice that EJ and EQ depend on
interactions, since the tunnel energy is renormalized by
quantum fluctuations [58], and both the sound velocity and
the Luttinger parameter vary with interaction strength [50].
We start from the case EJ ≫ EQ, where the Josephson

potential term −EJ cosðϕ̂0Þ dominates upon the kinetic
energy. Starting from an initial particle imbalance among
the two wires, its dynamical evolution is readily obtained
from the Heisenberg equations of motion and takes a
quantum Langevin form:

̈N̂ þ ω2
0 cosðϕ̂0ÞN̂ þ

Z
t

0

dt0γNðt; t0Þ _̂Nðt0Þ ¼ ξNðtÞ; ð4Þ

with (see the Supplemental Material [54]) ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
EJEQ

p
=ℏ

the Josephson frequency, γNðt; t0Þ the memory-friction

(a)

(c)

(b)

FIG. 1. Scheme of the geometries considered in this work: two
weakly coupled atomic waveguides (a) and a ring potential split
by a weak barrier (b). (c) Single-particle wave functions ψ jðxÞ
used as initial condition in the TG solution and the corresponding
confining potential.
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kernel, and ξNðtÞ the quantum noise generated by the
phonon bath. γNðt; t0Þ can be approximated to be local in
time in the case of long wires, where many excited phonons
contribute to the bath, and in the low-energy regime, where
the high-energy cutoff of the LL theory is the largest energy
scale in the problem. In the high-temperature, regime
we have hξNðtÞi ¼ 0 and hξNðtÞξNðt0Þi ¼ ηδðt − t0Þ, with
η ¼ 2E2

JkBT=ℏ
2MLv.

For small phase oscillations, the average relative number
NLL ¼ hN̂i in Eq. (4) is then described by a damped
harmonic oscillator with frequency ωJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 − γ2

p
and

damping rate γ ¼ πEJ=ℏK [54]. In the weakly interacting
limit, where K ∼ 1=

ffiffiffiffiffiffiffi
g1D

p
and vs ∼

ffiffiffiffiffiffiffi
g1D

p
with g1D the 1D

interaction strength, we recover the predictions of the
two-mode model in its small-oscillation limit; i.e., we find
EQ ∝ g1D and γ=EQ vanishing for g1D → 0, yielding
undamped Josephson oscillations. At increasing inter-
actions, EQ increases, being related to the compressibility
of the system, and EJ decreases, since it is renormalized by
larger and larger phase fluctuations. Since γQ ≡ γ=ω0 ¼
π

ffiffiffiffiffiffi
EJ

p
=

ffiffiffiffiffiffi
EQ

p
K, we predict that Josephson oscillations will

be more and more damped at increasing interactions.
Hence, quite interestingly, while remaining in the regime
EJ ≫ EQ, both the underdamped and the overdamped
Josephson oscillations can be accessed. Using realistic
experimental values [36,37], i.e., EJ=ℏ ¼ 2π × 80, 200,
900 Hz, L ≈ 6.8 μm, v ≈ 6.7 mm=s, and a 1D interaction
strength g1D=ℏ ¼ 0.84 mm=s which leads to EQ=ℏ ≈
245 Hz for N ¼ 20, we estimate ω0≈2π×ð50−160ÞHz
and γ ≈ 0.4–20 ω0. Notice also that at fixed interactions
one may explore the crossover from underdamped to
overdamped oscillations by tuning the barrier strength.
In Fig. 2, we show the damped Josephson oscillations of

the relative number between the two clouds, at varying
barrier and interaction strength. The noise in Eq. (4) yields
stochastic fluctuations in the dynamics [54], indicated
as shaded areas in the figure. At long times t ≫ 1=γ

and in the high-temperature regime, we have ΔNLL ¼
hðN̂ − hN̂iÞ2i1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðML2=ℏ2ÞkBT

p
, which coincides with

the high-temperature limit found using the fluctuation
dissipation theorem [54,59]. Of course, in any closed,
finite, quantum system revivals are expected and would
occur if a discrete phonon spectrum is used. In a semi-
classical approach, for example, revivals can be viewed as a
resynchronization of the bath modes [60].
In the opposite regime EJ ≪ EQ, the phase is only

weakly pinned and displays large fluctuations. The dynam-
ics are most suitably described in the Fock basis for the
relative number. The energy levels of the quantum particle
seen in Eq. (3) can be described as a function of the number
of excitations Nex, which plays the role of quasimomentum
in crystals, and takes the form of a sequence of parabolas
εnðNexÞ ¼ EQðn − NexÞ2=2, with N̂jni ¼ njni, with gaps
of amplitude EJ opening at semi-integer values of Nex.
Close to the anticrossing pointsNex ¼ �1=2;�3=2;…, the
system behaves as an effective two-level model. In this
case, the Josephson dynamics correspond to the Rabi
oscillations of the quantum particle, with frequency
EJ=ℏ. Because of the large value of EQ, which also fixes
the scale of bath modes-level spacing, in this regime, there
is no effect of the bath modes on the quantum particle.
The Luttinger liquid model is very useful because it

allows us to describe a large range of interaction strengths,
though it remains an effective model. In the following, we
take a complementary approach and solve the exact
quantum mechanical evolution in the limit of infinitely
strong repulsive interactions, i.e., the Tonks-Girardeau
(TG) regime [61], corresponding to the case K ¼ 1 of
the LL theory. In this limit, using the time-dependent Bose-
Fermi mapping [61–63], the many-body wave function
ΨTG can be written as

ΨTGðx1;…;xNÞ¼Π1≤j≤l≤Nsgnðxj−xlÞdet½ψkðxj;tÞ�; ð5Þ

where ψ jðx; tÞ is the solution of the single-particle
Schrödinger equation iℏ∂tψ j ¼ ð−ℏ2∂2

x=2mþ Vðx; tÞÞψ j

with initial conditions ψ jðx; 0Þ ¼ ψ j being the eigenfunc-
tions of the Schrödinger problem at the initial time. To
induce Josephson oscillations, we perform a quench in the
confining potential Vðx; tÞ [64,65], taken as a box potential
separated in two parts by a delta barrier U0δðxÞ with an
imbalance δV0 between left and right waveguides at the
initial time [see Fig. 1(c)]. δV0 is then set to zero during
the time evolution, inducing 2Nex excitations above the
Fermi energy. The total density profile of the TG gas at
finite temperature is nðx;tÞ¼P∞

j¼0fðϵjÞjψ jðx;tÞj2 [66,67],
with fðϵnÞ the Fermi-Dirac distribution and ϵn the nth
single-particle eigenenergy, allowing us to obtain the relative
particle number NðtÞ ¼ NL − NR, with NL ¼ R

0
−L dxnðx; tÞ

and NR ¼ R
L
0 dxnðx; tÞ.

FIG. 2. Dynamics of imbalance IðtÞ (dimensionless) for
relative number NðtÞ=Nð0Þ in tunnel-coupled wires or for current
oscillations JðtÞ=Jð0Þ in a ring, from the LL approach, for various
values of γQ ¼ γ=ω0 or γQ ¼ γr=ωr

0, respectively. The corre-
sponding uncertainties due to the stochastic noise are indicated in
the shaded areas.
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In Fig. 3(a), we show the exact dynamics of NðtÞ
following the quench in the step potential. We observe
that for an initial small imbalance, corresponding to
Nex ¼ 1=2, undamped oscillations occur, with frequency
ωTG ¼ ϵNþ1 − ϵN . For a larger imbalance, an effective
damping appears, as a consequence of the several frequen-
cies associated to the excitations involved in the dynamics.
The exact solution allows us also to address the long-time
dynamics where oscillations display revivals [54] since the
system has finite size. In order to make connection with the
LL model, we notice that for bosons in the TG regime
EJ ¼ ℏωTG and EQ ¼ ℏ2π2N=mL2. For the parameters
used in Fig. 3, EJ=EQ ¼ 4 × 10−3. Hence, the oscillations
observed in the exact solutions at small δV0 are the
undamped Rabi oscillations of the quantum particle pre-
dicted by the LL model. For larger imbalance, the exact
dynamics corresponds to large-amplitude oscillations,
beyond the LL treatment.
Figure 3(b) shows the small-imbalance dynamics at

finite temperature. At differences from the predictions of
the LL model, we find damped oscillations. In order to
pinpoint the origin of this damping, using the exact
solution, we calculate the spectral function [54] for the
system at finite temperature, see Fig. 3(c). While the exact
spectral function contains multiple particle-hole excita-
tions, the LL model assumes a linear excitation spectrum.
This is an excellent approximation at low energy and, in
particular, for the energy scales involved in the dynamics of

the current study. The exact spectral function contains also
several low-energy excitations with frequencies of order EJ
[inset of Fig. 3(c)], which are associated to the presence of a
finite barrier and give rise to the observed damping. These
modes are absent in the infinite-barrier case corresponding
to the LL Hamiltonian (1). As a main conclusion of this
analysis, the exact solution validates the frequency of the
Josephson oscillations predicted in the LL model and the
fact that oscillations may be damped by an intrinsic bath
made of low-energy excitations.
The Luttinger-liquid analysis applies also to a dual

system made of ultracold bosons confined in a ring trap
of circumference length L, containing a small, localized
barrier and subjected to an artificial gauge field Ω. In this
system, we follow the dynamical evolution of the average
current as a function of time, following a sudden quench of
Ω. This can be induced, for instance, by transferring orbital
angular momentum on the atoms with a Laguerre-Gauss
beam [68] by phase imprinting [69], by stirring a potential
barrier [70], or by modulating an artificial gauge field [71].
We model the system by a single LL Hamiltonian that
describes the particles in the ring,

ĤLL ¼ ℏvK
2π

Z
L

0

dx

��
∂xφ̂ðxÞ −

2π

L
Ω
�
2

þ 1

K2
½∂xθ̂ðxÞ�2

�
;

ð6Þ

plus a weak delta potential barrier UðxÞ ¼ U0δðxÞ, with
corresponding Hamiltonian Ĥb ¼ 2n0Ueff cos½2θ̂ðx ¼ 0Þ�,
with n0 ¼ NT=L andUeff the effective barrier strength [58].
Notice that the duality of the model follows from the
density-phase duality of the LL Hamiltonian as well as the
duality between strong- and weak-barrier limits in the LL
description. In the ring geometry, the relevant collective
variables are the current and zero-mode density field
operator, fulfilling ½θ̂0; Ĵ� ¼ i=2. By following a procedure
similar to the coupled waveguide case [54,72], we find the
effective Hamiltonian:

ĤT ¼ ℏ2ð2πÞ2
2MrL2

ðĴ −ΩÞ2 − 2n0Ueff cosð2θ̂0Þ

þ
X
μ≥1

�
1

2Mr

�
P̂μ þ

4π
ffiffiffi
2

p
ℏ

L
ðĴ −ΩÞ

�2

þ 1

2
MrΩ2

μQ̂
2
μ

�
;

ð7Þ

where the quantum particle is now the current, Mr ¼
ðℏπ=vLKÞ and Ωμ ¼ vkμ are the mass and frequencies
of the bath modes, and in this case, Er

Q ¼ ℏ2ð2πÞ2=MrL2

and Er
J ¼ 2n0Ueff . When Er

J > Er
Q, the small oscillations

of the current (see Fig. 2) are again described by a harmonic
oscillator with frequency ωr

0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Er
QE

r
J

p
=ℏ and damping

rate γr ¼ 4πEr
JK=ℏ. The effective damping originates from

(a)

(c)

(b)

FIG. 3. Relative-number oscillations in the TG regime follow-
ing a quench of the initial step potential δV0: (a) at zero
temperature for δV0=EF ¼ 0.07 (blue dotted line), 0.14 (black
dashed line), and 0.72 (brown solid line), with EF the Fermi
energy and (b) at finite temperature for δV0=EF ¼ 0.07. (c) Exact
TG excitation spectrum (dimensionless, gray-scale points) in the
frequency-wave vector plane for T=TF ¼ 0.1 and LL excitation
spectrum (magenta points). Inset: zoom on the small-k region. In
all panels, NT ¼ 101 and λ≡ 2mLU0=ℏ2π2NT ¼ 200.
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the phonon modes of the ring. Notice that in this dual model
damping decreases at increasing interactions. In the oppo-
site regime Er

J < Er
Q, for small imbalances we expect

undamped Rabi oscillations among angular momentum
states. The exact TG solution for a quantum quench of the
artificial gauge field on a ring shows weakly damped
oscillations and the formation of nonclassical states [65].
In conclusion, by combining Luttinger-liquid theory and

an exact solution at infinite interactions, we have studied
the Josephson oscillations of particle imbalance among two
atomic waveguides as well as particle-current oscillations
along a ring. In both cases, we have found that an intrinsic
damping is present in the oscillations due to the coupling
with the collective excitations in the system. Our approach
also yields analytical expressions for the natural frequen-
cies and damping rates as a function of the microscopic
parameters of the model. In a similar fashion, the bath
phonon modes gives rise to damping of current-current
time correlation functions [74]. Our results are relevant not
only to ongoing studies on the bosonic Josephson effect at
different interactions strengths but also to future develop-
ments of quantum devices in which dissipation and
thermalization can be limiting factors to perform quantum
computations. Moreover, the results in ring potentials are
particularly relevant to current experiments, in particular, to
atomtronic devices [23,44,75] where the interplay of
interactions and barrier strength is crucial when creating
persistent currents.
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Messeguer, J. Martorell, and A. Polls, Phys. Rev. A 86,
023615 (2012).

[26] B. Juliá-Díaz, J. Martorell, and A. Polls, Phys. Rev. A 81,
063625 (2010).

[27] G. Ferrini, A. Minguzzi, and F. W. J. Hekking, Phys. Rev. A
80, 043628 (2009).

[28] A. Burchianti, C. Fort, and M. Modugno, Phys. Rev. A 95,
023627 (2017).

[29] A. Vardi and J. R. Anglin, Phys. Rev. Lett. 86, 568 (2001).
[30] F. Meier and W. Zwerger, Phys. Rev. A 64, 033610 (2001).
[31] K. Sakmann,A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,

Phys. Rev. Lett. 103, 220601 (2009).
[32] R. Hipolito and A. Polkovnikov, Phys. Rev. A 81, 013621

(2010).
[33] G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls,

Phys. Rev. A 55, 4318 (1997).
[34] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I.

Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch,
Nature (London) 429, 277 (2004).

[35] T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125
(2004).

PHYSICAL REVIEW LETTERS 121, 090404 (2018)

090404-5

https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1103/PhysRevLett.57.3164
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.95.170402
https://doi.org/10.1038/nature06186
https://doi.org/10.1038/nature06186
https://doi.org/10.1103/PhysRevA.59.R31
https://doi.org/10.1103/PhysRevLett.105.204101
https://doi.org/10.1103/PhysRevLett.105.204101
https://doi.org/10.1126/science.aac9725
https://doi.org/10.1103/PhysRevLett.120.025302
https://doi.org/10.1103/PhysRevA.57.R28
https://doi.org/10.1103/PhysRevA.57.R28
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1126/science.1062612
https://doi.org/10.1126/science.1062612
https://doi.org/10.1038/nphys125
https://doi.org/10.1103/PhysRevLett.106.025302
https://doi.org/10.1126/science.275.5300.637
https://doi.org/10.1103/PhysRevLett.98.030402
https://doi.org/10.1103/PhysRevLett.98.030407
https://doi.org/10.1038/nature07332
https://doi.org/10.1103/PhysRevA.88.063627
https://doi.org/10.1103/PhysRevA.88.063627
https://doi.org/10.1038/srep04298
https://doi.org/10.1088/1367-2630/17/4/045023
https://doi.org/10.1088/1367-2630/17/4/045023
https://doi.org/10.1103/PhysRevLett.105.080403
https://doi.org/10.1103/PhysRevLett.105.080403
https://doi.org/10.1103/PhysRevA.86.023615
https://doi.org/10.1103/PhysRevA.86.023615
https://doi.org/10.1103/PhysRevA.81.063625
https://doi.org/10.1103/PhysRevA.81.063625
https://doi.org/10.1103/PhysRevA.80.043628
https://doi.org/10.1103/PhysRevA.80.043628
https://doi.org/10.1103/PhysRevA.95.023627
https://doi.org/10.1103/PhysRevA.95.023627
https://doi.org/10.1103/PhysRevLett.86.568
https://doi.org/10.1103/PhysRevA.64.033610
https://doi.org/10.1103/PhysRevLett.103.220601
https://doi.org/10.1103/PhysRevA.81.013621
https://doi.org/10.1103/PhysRevA.81.013621
https://doi.org/10.1103/PhysRevA.55.4318
https://doi.org/10.1038/nature02530
https://doi.org/10.1126/science.1100700
https://doi.org/10.1126/science.1100700


[36] S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J.
Schmiedmayer, Nature (London) 449, 324 (2007).

[37] S. Hofferberth, I. Lesanovsky, T. Schumm, A. Imambekov,
V. Gritsev, E. Demler, and J. Schmiedmayer, Nat. Phys. 4,
489 (2008).

[38] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart,
G. Pupillo, and H.-C. Nägerl, Science 325, 1224 (2009).

[39] B. Yang, Y.-Y. Chen, Y.-G. Zheng, H. Sun, H.-N. Dai, X.-W.
Guan, Z.-S. Yuan, and J.-W. Pan, Phys. Rev. Lett. 119,
165701 (2017).

[40] M. Pigneur, T. Berrada, M. Bonneau, T. Schumm, E. Demler,
and J. Schmiedmayer, Phys. Rev. Lett. 120, 173601 (2018).

[41] T. Langen, T. Schweigler, E. Demler, and J. Schmiedmayer,
New J. Phys. 20, 023034 (2018).

[42] A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T.
Hill, C. J. Lobb, K. Helmerson, W. D. Phillips, and G. K.
Campbell, Phys. Rev. Lett. 106, 130401 (2011).

[43] K. C. Wright, R. B. Blakestad, C. J. Lobb, W. D. Phillips,
and G. K. Campbell, Phys. Rev. Lett. 110, 025302 (2013).

[44] S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W.
Clark, C. J. Lobb, W. D. Phillips, M. Edwards, and G. K.
Campbell, Nature (London) 506, 200 (2014).

[45] B. M. Garraway and H. Perrin, J. Phys. B At. Mol. Opt.
Phys. 49, 172001 (2016).

[46] H. Perrin and B. M. Garraway, Adv. At., Mol., Opt. Phys.
66, 181 (2017).

[47] K. Henderson, C. Ryu, C. MacCormick, and M. G. Boshier,
New J. Phys. 11, 043030 (2009).

[48] C. Ryu, P. W. Blackburn, A. A. Blinova, and M. G. Boshier,
Phys. Rev. Lett. 111, 205301 (2013).

[49] A. Turpin, J. Polo, Y. V. Loiko, J. Küber, F. Schmaltz, T. K.
Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart, Opt.
Express 23, 1638 (2015).

[50] M. A. Cazalilla, J. Phys. BAt. Mol. Opt. Phys. 37, S1 (2004).
[51] P. Fendley, F. Lesage, and H. Saleur, J. Stat. Phys. 85, 211

(1996).
[52] C. L.Kane andM. P. A.Fisher, Phys.Rev.B46, 15233 (1992).
[53] U. Weiss, Solid State Commun. 100, 281 (1996).
[54] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.121.090404 for details.

[55] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211
(1981).

[56] A. Caldeira and A. Leggett, Ann. Phys. (N.Y.) 149, 374
(1983).

[57] G. Schön and A. Zaikin, Phys. Rep. 198, 237 (1990).
[58] M. Cominotti, D. Rossini, M. Rizzi, F. Hekking, and A.

Minguzzi, Phys. Rev. Lett. 113, 025301 (2014).
[59] U. Weiss, Quantum Dissipative Systems, Series in Modern

Condensed Matter Physics (World Scientific, Singapore,
2008).

[60] K. E.Nagaev andM.Büttiker, Europhys. Lett. 58, 475 (2002).
[61] M. Girardeau, J. Math. Phys. 1, 516 (1960).
[62] M. D. Girardeau and E. M. Wright, Phys. Rev. Lett. 84,

5691 (2000).
[63] V. I. Yukalov and M. D. Girardeau, Laser Phys. Lett. 2, 375

(2005).
[64] M. Cominotti, F. Hekking, and A. Minguzzi, Phys. Rev. A

92, 033628 (2015).
[65] C. Schenke, A. Minguzzi, and F. W. J. Hekking, Phys. Rev.

A 84, 053636 (2011).
[66] K. Millard, J. Math. Phys. 10, 7 (1969).
[67] K. K. Das, M. D. Girardeau, and E. M. Wright, Phys. Rev.

Lett. 89, 170404 (2002).
[68] C.Ryu,M. F.Andersen, P. Cladé, V.Natarajan,K.Helmerson,
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