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In the quantum world, correlations can take the form of entanglement which is known to be
monogamous. In this Letter we show that another type of correlation, indistinguishability, is also restricted
by some form of monogamy. Namely, if particles A and B simulate bosons, then A and C cannot perfectly
imitate fermions. Our main result consists in demonstrating to what extent it is possible.
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Introduction.—If a particle in box A is indistinguishable
from a particle in box B, then all the parameters describing
their states, apart from their positions, are the same. Such
particles are strongly correlated because the state of one of
them automatically determines the state of the other. In
quantum theory, the above system is described by quantum
correlations—i.e., by an entangled state which is either
symmetric (bosons) or antisymmetric (fermions).
Quantum entanglement cannot be efficiently explained

within any reasonable classical theory [1]. Even within the
quantum theory, the description of entanglement is not
simple if it occurs between more than two particles. First, in
these cases entanglement can take many inequivalent forms
[1–3]. For instance, already for three particles there is more
than one way to define a maximally entangled state. In
addition, quantum correlations are restricted by the so-
called monogamy bounds [4–6]. Specifically, if particles A
and B are maximally entangled, then no other particleC can
be entangled with either A or B.
In multipartite systems, indistinguishability can also take

different forms. For example, three particles can be prepared
in a tripartite symmetric state (three bosons), an antisym-
metric state (three fermions), or some general state allowing
different pairs of particles to obey different statistics. It is
intuitively clear that while particles in boxes A and B behave
like bosons, it is not possible for particles in boxesB andC to
behave like fermions. This could be interpreted as a mani-
festation of some form of a monogamy.
However, in order to truly speak of a monogamy

between different types of statistics, one needs to consider
a more detailed problem: given that particles in boxes A and
B behave like bosons with probability p, what is the
probability that particles in B and C behave like fermions?
Here we answer the above question. More precisely, we
derive trade-off bounds on the simulability of bosons and
fermions in tripartite systems and represent them in a
simple graphical way.

In this Letter, we say that particles in a given state
simulate some type of particle statistics, rather than that
they are particles of a certain type (bosons, fermions, etc.).
This is because in our considerations we assume that the
same system can be prepared in states corresponding to
different statistics. In general, this assumption requires the
application of asymmetric operations, which is only possi-
ble if the corresponding particles are distinguishable.
Therefore, we prefer to say that here we discuss the
simulation of indistinguishability with entanglement.
To justify our approach, let us observe that although in

most cases one deals with fundamentally indistinguishable
bosons or fermions, there are many situations in which
particles can be effectively distinguished. This is because in
reality each particle has more than one degree of freedom
(d.o.f.) (e.g., position and spin or polarization), and the
symmetry or antisymmetry requirement applies to the
whole state of the system. If one observes only a single
d.o.f. and ignores (or is unaware of) the remaining ones, the
observed state does not need to obey the fundamental
symmetry of the investigated particles.
In fact, various effects can occur when auxiliary d.o.f. act

as effective particle labels. For instance, two polarization-
entangled photons can be distinguished by different
momenta—say a photon moving to the right and one
moving to the left. In this case, the polarization-entangled
state does not need to be symmetric. It can even be
antisymmetric, provided that the same is true for the spatial
state of the two photons, as the total state must be
symmetric. Two photons in such a state would antibunch
on a beam splitter [7]. An analogous example can be
provided for fermions. Although quarks were expected to
be fermions, they were also predicted to occupy the same
state, which would seemingly violate the exclusion prin-
ciple. This led to the discovery of a new hidden property,
color, which for three quarks making a baryon is always in
the antisymmetric state [8].
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Finally, let us briefly discuss our work in the context of
other related research. First, the formulation of a resource
theory concerning indistinguishability (and symmetry or
asymmetry) is an active research topic (see e.g., Ref. [9]).
Our Letter contributes to these investigations by showing
that in multipartite systems, symmetry and antisymmetry
is affected by monogamy-like relations. In addition,
we link indistinguishability with another well-established
resource—entanglement.
Second, our work has implications on foundations of

quantum theory and quantum information theory. We show
that imperfect bosonic or fermionic behavior does not need
to be absolute. It is possible that in some cases particle A is
an imperfect boson when considered together with particle
B and an imperfect fermion when considered with particle
C. This can have potential use in quantum information
tasks based on indistinguishability, like boson sampling
(see also Ref. [10]).
Third, our work could find applications in quantum

optics, cold atom physics, solid state physics, or even in
high-energy physics—in simple words, in any field dealing
with multipartite states of elementary particles. Due to the
arguments provided above, the detection of states studied in
our work—i.e., the states that depart from perfect symmetry
or antisymmetry—can be considered as a signature of a
hidden structure of a fundamentally symmetric or anti-
symmetric system. On the other hand, the capability of
manipulating with one d.o.f. of a composite globally
symmetric or antisymmetric system can be used as a
remote control of some other d.o.f.
Preliminaries.—Let us consider a set of three modes A,

B, and C to which we refer as “boxes.” Each box is
occupied by a single particle, so that the general pure state
of the system is of the form

jΨi ¼ α1jA;B;Ci þ α2jB; A;Ci þ α3jC;A; Bi
þ α4jC;B; Ai þ α5jA;C; Bi þ α6jB;C; Ai: ð1Þ

Here we assume that the three particles are distinguishable;
therefore the notation jA;B; Ci means that the first particle
is in box A, the second in B, and the third in C. Moreover,
for simplicity we do not consider mixed states of the
system. Nonetheless, our reasoning applies to them as well
(see the Supplemental Material [11]).
Next, we introduce permutation operators ΠXY swapping

the labels of boxes X and Y, for instance

ΠABjA; B;Ci ¼ jB; A;Ci: ð2Þ

The average value of these operators, denoted as

vXY ¼ hΨjΠXY jΨi; ð3Þ

has a clear operational meaning. If vXY ¼ �1, then the
Hong-Ou-Mandel experiment [12] conducted on particles

from boxes X and Y would result in perfect bunching (or
antibunching). Since bunching (antibunching) is a typical
bosonic (fermionic) property that can be used as an
indicator of particle statistics, in this Letter we say that
if vXY ¼ �1, then the particles in boxes X and Y simulate
bosons (fermions). In general, for −1 < vXY < 1, the
bunching (antibunching) is not perfect, and the particles
in boxes X and Y simulate bosons (fermions) with
probability ð1� vXYÞ=2.
Let us also observe that a cyclic permutation operator S,

whose matrix representation is given by

A B C C A B

B A A B C C

C C B A B A

A B C

B A C

C A B

C B A

A C B

B C A

2
6666666664

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

3
7777777775

;

ð4Þ

can be expressed in terms of permutation operators ΠAB,
ΠBC, and ΠAC:

S ¼ ΠABΠBC ¼ ΠACΠAB ¼ ΠBCΠAC: ð5Þ

Since S3¼1, its eigenvalues are 1 and e�ið2π=3Þ¼
−1

2
�ið ffiffiffi

3
p

=2Þ.
Monogamy between simulation of bosons and

fermions.—Let us consider the relations between the
permutation properties of different subsystems. We start
with a simple example of vAB ¼ 1, which means that
the particles occupying boxes A and B simulate bosons.
Then hSi ¼ hΨjΠABΠBCjΨi ¼ hΨjΠBCjΨi ¼ vBC. Since
the spectrum of S is 1 and − 1

2
� ið ffiffiffi

3
p

=2Þ, the smallest
real value attainable by hSi is − 1

2
. Therefore, the maximal

possible fermionic behavior in this case is given by
vBC ¼ − 1

2
. As a result, hSi ¼ − 1

2
and, because of

Eq. (5), vAC ¼ − 1
2
. An example of a state leading to the

above values is

1

2
ðjA;B;Ci þ jB;A; Ci − jA;C; Bi − jB;C; AiÞ: ð6Þ

Similarly, one can ask about the maximal bosonic
behavior of B and C, provided that A and B simulate
fermions. In this case, vAB ¼ −1 and hSi ¼ −vBC ¼ −vAC.
In order to maximize vBC we need to minimize hSi, which
is again − 1

2
. Therefore, the maximal bosonic behavior is

vBC ¼ vAC ¼ 1
2
. The possible corresponding state is of the

form
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1

2
ðjA;B;Ci − jB; A;Ci þ jA;C; Bi − jB;C; AiÞ: ð7Þ

Note that if particles inA andB simulate bosons and so do
particles in B and C, then particles in A and C simulate
bosons too. This is because in this case hSi ¼ vAB ¼
vBC ¼ vAC. Therefore, the simulability of bosons is tran-
sitive. This is also true for the simulability of fermions, in
which case −hSi ¼ vAB ¼ vBC ¼ vAC.
General case.—The situation gets more complicated

when neither pair of particles is perfectly bosonic or
fermionic; i.e., vAB, vBC, and vAC are between −1 and 1.
To analyze this case, we introduce the following three
operators:

W1 ¼
1

3
ðΠAB þ ΠBC þ ΠACÞ; ð8Þ

W2 ¼
1

3
ð2ΠAB − ΠBC − ΠACÞ; ð9Þ

W3 ¼
1ffiffiffi
3

p ðΠBC − ΠACÞ: ð10Þ

These operators have eigenvalues �1 and 0. For W1, the
eigenvalue 0 is four times degenerate and the eigenvalue
þ1 corresponds to the symmetric state of the three particles
(bosonic state), whereas −1 corresponds to the antisym-
metric one (fermionic state). Interestingly, W1 commutes
with both W2 and W3: ½W1;W2� ¼ ½W1;W3� ¼ 0, and in
addition W1W2 ¼ W1W3 ¼ 0.
There are two interesting properties ofW2 andW3. First,

the two operators anticommute: fW2;W3g ¼ W2W3þ
W3W2 ¼ 0. Second, W2

2 ¼ W2
3. Because of these two

properties, the operator

Wθ ¼ W2 cos θ þW3 sin θ; ð11Þ

where θ ∈ ½0; 2πÞ, obeys

W2
θ ¼ W2

2cos
2θ þW2

3sin
2θ þ fW2;W3g cos θ sin θ

¼ W2
2 ¼ W2

3: ð12Þ

Note that the above resembles the properties of Pauli spin-
1=2 operators. The anticommutation of Pauli operators lies
at the heart of the Bloch vector representation of spin-1=2
states [13], and we will see in a moment that the properties
ofW2 andW3 also allow one to propose a simple graphical
representation of constraints on vAB, vBC, and vAC.
The operator W1 is supported on the subspace that is

orthogonal to the one on which W2 and W3 are supported.
Therefore,

jhW1ij þ jhWθij ≤ 1; ð13Þ

or explicitly,

jvAB þ vBC þ vACj þ jð2vAB − vBC − vACÞ cos θ
þ

ffiffiffi
3

p
ðvBC − vACÞ sin θj ≤ 3: ð14Þ

The above constitutes a family of monogamy relations for
vAB, vBC, and vAC parametrized by θ. Any quantum state of
the form (1) satisfies these relations for all θ. We stress that
Eq. (14) has a clear operational meaning stemming from the
direct relation of the average values vXY with the proba-
bilities of bunching on a beam splitter.
The graphical representation of the relations (13)

and (14) defines a region in a three-dimensional space.
With each state of form (1) (or a mixture of such states), one
can associate the vector v ¼ ðvAB; vBC; vACÞ which needs
to lie inside this region. In order to find the shape, let us first
give a new representation of the operatorsW1,W2, andW3.
We define a vector of operators

Π ¼ ðΠAB;ΠBC;ΠACÞ ð15Þ
and real vectors wi (i ¼ 1; 2; 3; θ) such that

Wi ¼ wi ·Π: ð16Þ

The average value of Wi can then be represented as

hWii ¼ wi · v: ð17Þ
Therefore, the relations (13) take the form

jw1 · vj þ jwθ · vj ≤ 1: ð18Þ

The above formula defines two conical regions whose
circular bases are connected (see Fig. 1). The bases lie in
the plane spanned by w2 andw3, and the whole region has a
rotational symmetry with respect to the w1 axis.

FIG. 1. Graphical representation of the tradeoff relation (18).
(a) The vector v ¼ ðvAB; vBC; vACÞ lies inside the conical region.
(b) The octahedron inscribed into the cones corresponds to vectors
v obtainable with only bipartite entanglement. The dot at
v ¼ ð0; 0; 0Þ is the only possibility resulting from fully separable
states. The inverse of this statement, however, is not true—there are
entangled states for which all the values vXY vanish.
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Because of circular symmetry, one can get rid of the
parameter θ and write a single monogamy relation

jw1 · vj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw2 · vÞ2 þ ðw3 · vÞ2

q
≤ 1: ð19Þ

However, the parameter θ allows one to show that the above
monogamy relation is tight; i.e., one can find a quantum
state corresponding to each point on the surface of the
region denoted by Eq. (18).
Consider the state

jχð�;�Þ
θ;φ i ¼ cosφj�i þ sinφjΨ�

θ i; ð20Þ

such that

h�jW1j�i ¼ �1; ð21Þ

hΨ�
θ jWθjΨ�

θ i ¼ �1: ð22Þ

In the above equations, j�i correspond to the symmetric
(bosonic) and antisymmetric (fermionic) states of the three
particles, and jΨ�

θ i are the �1 eigenstates of the operator
Wθ. Because W1 and Wθ span orthogonal subspaces, we
get h�jΨ�

θ i ¼ 0, and therefore

jhW1ij þ jhWθij ¼ j cosφj2 þ j sinφj2 ¼ 1: ð23Þ

The states in Eq. (20) cover the whole surface for θ ∈ ½0; πÞ
and φ ∈ ½0; π=2� (see the Supplemental Material [11] for
more details).
Simulability and entanglement.—Having described the

allowed triples fvAB; vBC; vACg, we now focus on their
dependence on the type of entanglement in the tripartite
system described by the pure state jΨi [see Eq. (1)]. If this
state is not entangled, the three reduced single-particle
density matrices need to be pure. Since they all have
diagonal forms given by

ρ1 ¼ diagðjα1j2 þ jα5j2; jα2j2 þ jα6j2; jα3j2 þ jα4j2Þ;
ρ2 ¼ diagðjα2j2 þ jα3j2; jα1j2 þ jα4j2; jα5j2 þ jα6j2Þ;
ρ3 ¼ diagðjα4j2 þ jα6j2; jα3j2 þ jα5j2; jα1j2 þ jα2j2Þ; ð24Þ
this means that only a single αi is nonzero. But this implies
that all the average permutation values vXY vanish, since

vAB ¼ 2Reðα�1α2 þ α�3α4 þ α�5α6Þ;
vAC ¼ 2Reðα�1α4 þ α�2α6 þ α�3α5Þ;
vBC ¼ 2Reðα�1α5 þ α�2α3 þ α�4α6Þ: ð25Þ

If the state jΨi is bipartite entangled, it can be written as
jψi1 ⊗ jϕi23, jψi2 ⊗ jϕi13, or jψi3 ⊗ jϕi12. In any of
these cases, only one of the single-particle density matrices
needs to be pure. It can be easily checked that in such a
situation exactly one parameter vXY can be nonzero, and

that its maximum value can attain �1. Thus, the bipartite
entangled states and their mixtures span the polyhedron
in the space fvAB; vAC; vBCg defined by the vertices
f�1; 0; 0g, f0;�1; 0g, and f0; 0;�1g.
Finally, the presence of genuine tripartite entanglement

corresponds to the situation in which all single-partite
density matrices are mixed. This is the only situation in
which more than one parameter vXY can be nonzero.
However, the inverse of this statement is not true, as show-
cased by the state ð1= ffiffiffi

3
p ÞðjABCi þ jCABi þ jBCAiÞ, for

which all the average values vXY vanish.
Simulability of imperfect bosons and fermions is not

transitive.—Now we discuss properties of a particular state.
Let us consider a state corresponding to the vector
v ¼ ðx; x;−xÞ. We are looking for the maximal x for which
v satisfies the monogamy relation. The inequality (19)
implies that the maximal value is x ¼ 3

5
. The corresponding

state is
ffiffi
4
5

q
jϕi þ ð1= ffiffiffi

5
p Þjþi, which is a superposition of

the symmetric (bosonic) state and

jϕi¼ 1

2
ðjA;B;Ciþ jB;A;Ci− jC;B;Ai− jB;C;AiÞ: ð26Þ

This example shows substantial departure from the tran-
sitivity of simulability of imperfect bosons and fermions.
Although a pair of particles in boxes A and B
(or B and C) simulates bosons with the probability
ð1þ vABÞ=2 ¼ 4

5
, the pair in boxes A and C simulates

fermions with the probability ð1 − vACÞ=2 ¼ 4
5
. Note that

the probability of bunching greater than 3
4
is a sufficient

condition to violate the noncontextuality-like inequality
[14–16]. The violation of this inequality implies that bunch-
ing properties of particles cannot be explained by a classical
hiddenvariablemodel for which it is predeterminedwhether
the particle goes through or reflects from a beam splitter.
Because the monogamy relation (18) is symmetric

under the transformation v → −v, a state for which v ¼
ð− 3

5
;− 3

5
; 3
5
Þ exists as well.

Glance at the four-partite scenario.—We now turn our
attention to the case of four particles in four boxes, denoted
by letters fromA toD (see theSupplementalMaterial [11] for
more details). By analogy with the three-box scenario, we
consider six vXY parameters corresponding to average values
of permutations ΠXY . In particular, we ask how the minimal
vXY changes when some pairs are set to simulate bosons.
Figure 2 presents two scenarios with significantly differ-

ent properties. In case (a), vAB and vCD are set to 1 and we
ask what is the minimal value of

−x ¼ vAC ¼ vAD ¼ vBC ¼ vBD; 0 < x < 1: ð27Þ
The tripartite monogamy relations stemming from triangles
ABC and ABD imply that −x ≥ − 1

2
. One can show that this

bound is attained by the eigenstate corresponding to the
largest eigenvalue of the operator
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ΠAB þ ΠCD − ΠAC − ΠAD − ΠBC − ΠBD: ð28Þ

Note that the same minimal value of x would be true if we
demanded that only vAB be set to 1.
On the other hand, it is not possible to fully explain

scenario (b) with only tripartite relations. Once again, they
imply that −x ≥ − 1

2
. This time, however, −x cannot be

smaller than − 1
3
, as

hΠABþΠACþΠBC−ΠAD−ΠBD−ΠCDi¼ 3þ3x; ð29Þ

and the largest eigenvalue of the above operator is 4.
Summary and outlook.—Entangled particles can simu-

late indistinguishable particles, provided they are prepared
in a proper state. If the state is symmetric, the particles
behave like bosons, and if it is antisymmetric, they behave
like fermions. In general, the particles can simulate various
combinations of imperfect bosonic and fermionic proper-
ties. Here we show that these combinations are restricted by
fundamental bounds. These bounds take the form of
monogamy relations, a tripartite version of which was
derived in this Letter. Our relations are tight and can be
represented using a simple three-dimensional visualization.
One of the conclusions that stems from the relations is that
simulability of imperfect bosons or fermions need not be
objective. Instead, it can be relative; i.e., the particle in box
A can simulate an imperfect boson when considered
together with the particle in box B and, at the same time,
an imperfect fermion when considered together with the
particle in box C. Finally, the tripartite relations can only
partially explain the behavior of four-partite systems, which
implies that indistinguishability, similarly to entanglement,
depends on the number of particles.
We considered permutation properties of all three particle

pairs originating from a tripartite system. These properties
canbe related to the probabilities of bunching and antibunch-
ing in theHong-Ou-Mandelexperiment.However, following
Menssen et al. [17], it would be interesting to consider

genuine tripartite relations of the states studied in this Letter.
For example, one can study the counting statistics for the
states in Eq. (1) on a symmetric three-port (tritter).
Another interesting extension of this Letter could stem

from relaxing the superselection rule which states that each
box is occupied by a single particle. In general, one could
study the constraints on closeness to the symmetric and
antisymmetric subspaces of pairs (or larger numbers) of
subsystems for arbitrary n-qudit states. This line of research
might have implications for quantum marginal problems.
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