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We study a one-dimensional system of strongly correlated bosons on a dynamical lattice. To this end, we
extend the standard Bose-Hubbard Hamiltonian to include extra degrees of freedom on the bonds of the
lattice. We show that this minimal model exhibits phenomena reminiscent of fermion-phonon models. In
particular, we discover a bosonic analog of the Peierls transition, where the translational symmetry of the
underlying lattice is spontaneously broken. This provides a dynamical mechanism to obtain a topological
insulator in the presence of interactions, analogous to the Su-Schrieffer-Heeger model for electrons. We
characterize the phase diagram numerically, showing different types of bond order waves and topological
solitons. Finally, we study the possibility of implementing the model using atomic systems.
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Introduction.—The study of interactions between par-
ticles and lattice degrees of freedom (d.o.f.) is of central
importance in quantum many-body physics. The interplay
between electrons and phonons has been extensively
studied, leading to the description of paradigmatic effects
such as superconductivity, polaron formation or charge
density waves [1,2]. The analogous problem for bosons, on
the other hand, has not been extensively investigated. The
basic feature of phononic systems is that the lattice may
fluctuate or order at various wavelengths. In one dimen-
sion, a system of itinerant particles on a deformable lattice
can undergo a Peierls transition [3], characterized by the
spontaneous breaking of the lattice translational symmetry
in a density-dependent manner. For fermions, the statistical
correlations induced by Pauli’s exclusion principle are
sufficient to drive this effect, associated with a gap opening
around the Fermi surface. The latter is absent in the bosonic
case. However, similar effects still appear in the presence of
sufficiently strong interactions, as we report in this Letter.
The study of boson-lattice problems becomes very

relevant in the context of quantum simulators. These
are versatile platforms where model Hamiltonians can be
engineered with an unprecedented degree of control [4,5].
Ultracold atoms in optical lattices, in particular, allow one
to experimentally address systems of strongly correlated
bosons and to study their properties [6–9], e.g., the
realization of the phase transition between a Mott insulator
and a superfluid [10] in the Bose-Hubbard model [11].
Since then, a variety of models have been studied—
including, e.g., different types of interactions [12,13] or
artificial gauge fields [14,15]. These provide an interesting
platform to study novel phenomena, such as supersolid
phases [16] or topological order [17].

The simulation of these models rely on the implementa-
tion of static optical lattices. The particles do not influence
the lattice structure and, therefore, phonons are usually not
taken into account. Trapped ion systems can also simulate
many-body Hamiltonians [18–20]. In these systems, pho-
nons appear naturally [21], and can be used to mediate
interactions between the ions [22]. However, trapped ions are
confined at the lattice sites, making the simulation of
itinerant particles more challenging. Recently, advances in
designing systems formed by both neutral atoms and ions
[23–30] suggest the possibility of simulating itinerant
particles and dynamical lattices simultaneously. This strategy
was explored for a chain of fermionic atoms, where a Peierls
transition was predicted [24]. Alternative approaches include
the use of molecules in self-assembled dipolar lattices [31],
optical cavities [32–37], or trapped nanoparticles [38].
In this Letter, we propose and analyze a one-dimensional

model of interacting bosons coupled to a dynamical lattice,
i.e., deformable and nonadiabatic. We also discuss a possible
experimental scheme with ultracold atoms. The most impor-
tant result is the discovery of bosonic analogs of the Peierls
transition, leading to commensurate and incommensurate
bond order waves (BOW). For density ρ ¼ 1=2, in particular,
the ground state corresponds to a dynamically generated
topological insulator, supporting edge states and topological
solitons, similar to the fermionic SSH model [39]. The
proposed model provides a unique playground to study the
interplay between strong interactions, lattice dynamics,
spontaneous symmetry breaking, and topological effects.
Model.—We introduce a minimal model of strongly

correlated bosons interacting with lattice d.o.f. described
by a set of independent two-level systems. The Hamiltonian
reads
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where b̂†i creates a boson on site i and n̂i ¼ b̂†i b̂i is the
number operator. σ̂zi and σ̂xi are Pauli operators associated
with a spin-1=2 system living on the bond between sites i
and iþ 1. The first three terms of Eq. (1) correspond to the
standard Bose-Hubbard Hamiltonian [11]. The next term
describes a lattice-dependent boson tunneling. The total
hopping through a bond is maximized (minimized) for a
spin in the “up” (“down”) state. Finally, the last two terms
introduce the spin dynamics. The Hamiltonian (1) bears
similarities with models with spin dependent hoppings,
such as quantum link models [40].
In thiswork,we focuson the regimeof quasiadiabatic spins

(β ≪ t). In this limit, the ground state of the spins depends on
the competition between two terms: the energy difference Δ
and the interaction α with the bosons. If one dominates, the
expectation value hσ̂zi i will be uniform and close to −1
(Δ ≫ α) or þ1 (Δ ≪ α). When the two are comparable,
phases with broken translational symmetry arise.
Hardcore bosons.—Consider an adiabatic lattice, β ¼ 0,

in the hardcore boson limit,U → ∞. After a Jordan-Wigner
transformation, the model is mapped to a system of spinless
fermions in a classical background. At half filling, the
spin configuration minimizing energy is staggered (Néel
order) for values of Δ between two critical points,
Δ�

c ¼ ð4t=πÞ½δ� ðEð1 − δ2Þ − 1Þ�, where δ ¼ α=t and
EðxÞ is a complete elliptic integral of the second kind
[41]. From the fermions’ viewpoint, this leads to the
development of a staggered order on the bonds, a gap
opens at the Fermi surface, and the system becomes
insulating. This effect appears when the lattice deforma-
tion, which breaks translational invariance, has a wave-
length equal to π=kF, where kF is the Fermi wave vector.
This is the mechanism behind the Peierls instability [3].
Thus, our minimal model is capable of describing analo-
gous phenomena such as those appearing in more com-
plicated fermion-lattice systems [39].
Finite interactions.—For finite values ofU, we enter into

the strongly correlated boson regime, and the mapping to
noninteracting fermions is not possible. To calculate the
ground state of the system, we use a DMRG algorithm with
bond dimensionD ¼ 40 [45]. We consider a system size of
L ¼ 60 sites (and L − 1 bonds), and work with open
boundary conditions. We truncate the maximum number
of bosons per site to n0 ¼ 2. This approximation is justified
for low densities and strong interactions [41]. In the
following, we fix the values of the parameters to t ¼ 1,
α ¼ 0.5, and β ¼ 0.02.
At the bosonic density ρ ¼ 1=2, the Neel order survives

for finite values of U, and disappears for small interactions.

Strong correlations are needed, therefore, to have a bosonic
Peierls phase. The Bose-Hubbard model on a fixed bond-
dimerized lattice was previously studied, revealing an
insulating phase at ρ ¼ 1=2 [46], and the presence of
topological edge states [47]. Here, the same superlattice
structure is obtained dynamically, in the spirit of the
original SSH model for fermions and phonons [39]. We
also observe edge states which will be studied in a separate
work [48]. We focus here on a different topological effect
also present in the SSH model: the solitonic solutions.
These are a consequence of the double degenerate ground
state at ρ ¼ 1=2, corresponding to the two inverted stag-
gered patterns, and only occur when quantum fluctuations
on the lattice are present.
For U ¼ 10, we study the phase diagram of the model in

terms of Δ and ρ. For Δ ≫ α or Δ ≪ α, the spin
configuration in the ground state is uniform. The bosonic
part of the Hamiltonian (1) is qualitatively similar to the
Bose-Hubbard model [11], with a Mott insulator (MI) and a
superfluid phase (SF). In an intermediate regime
(Δ ≈ 0.6–1.0), the translational symmetry is broken in
the ground state for a substantial range of densities.
Figure 1 shows the spatial structure on the bonds
(a) and sites (b) for Δ ¼ 0.85. For ρ ¼ 1=2 and 2=3, the
unit cell is enlarged to two and three sites, respectively.
Similarly to ρ ¼ 2=3, a trimer configuration appears for
ρ ¼ 1=3 at a different Δ. For densities close to the
mentioned ones, long wavelength modulations appear on
top of the corresponding patterns. These are solitonic
configurations where the underlying order—staggered in

(a) (b)

FIG. 1. Spatial structure of bond (a) and site (b) expectation
values for Δ ¼ 0.85 and different bosonic densities, showing
some of the representative orders that can develop. From above
to below: ρ ¼ 1=2, ρ ¼ 1=2þ 2=60, ρ ¼ 2=3 − 2=60, ρ ¼ 2=3,
and ρ ¼ 0.88. Different colors represent different sublattice
elements, making explicit the long-wavelength modulations on
top of the underlying order.
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the half-filled case—is reversed periodically forming kinks;
the “extra” bosons or holes lead to increased density
modulations, located around the kinks [2nd or 3rd row
in panel (b)]. Finally, close to ρ ¼ 1, long wavelength
structures appear. The bosonic hopping hb̂†i b̂iþ1 þ H:c:i
presents the same spatial pattern as hσ̂zi i in all the cases. We
therefore focus on the latter quantity for simplicity. The
ground states, shown in Fig. 1, possess long-range order.
We refer to the corresponding quantum phases as bond
order waves, since the bosonic order is block diagonal. In
many cases, this bond order is accompanied by small
density waves. We consider the spin structure factor

SσðkÞ ¼
1

L2

X

i;j

eðxi−xjÞkihðσ̂zi − σ̄zÞðσ̂zj − σ̄zÞi; ð2Þ

with σ̄z ¼ P
ihσ̂ii=L, where the summations run over all

bonds. This quantity develops a peak for some k0 in the
presence of long-range order, and its height can be used as
an order parameter. Figure 2 shows Smax

σ in terms of Δ for
ρ ¼ 0.733, which qualitatively distinguishes a uniform SF
phases from a solitonic BOW. The inset (a) presents Sσ for
Δ ¼ 0.90, where a peak develops for k0 ¼ 8π=15. From
this wave vector, an order wavelength can be defined as
λ0 ¼ 2π=k0. We note that, in this case, λ0 is not an integer
factor of the lattice spacing a (fixed to one here). This is
also the case for the other solitonic and long-wavelength
BOW phases. We refer to these orders as incommensurate
(iBOW). For ρ ¼ 1=3, 1=2, and 2=3, however, Sσ presents a
peak at π=3, π, and 2π=3, respectively, with wavelengths of
the form aN. We call the latter commensurate orders
(cBOW). While a long-range order is expected in com-
mensurate phases, its presence in incommensurate ones
(especially solitonic) is a special feature of the model,
related to the Peierls instability. The inset (b) shows the

scaling of SσðkÞ with the system size, for k ¼ k0 and k ¼ π
and for two representative incommensurate cases: ρ ¼ 0.55
(solitonic) and ρ ¼ 0.85 (long-wavelength). The fit, con-
taining terms up to Oð1=L3Þ, shows that the long-range
order exists in the thermodynamic limit.
One of the principal features of the theory of Peierls

transition is the relation between the order wave vector and
the Fermi wave vector [3]. In one-dimensional systems
with a two-point Fermi surface, the theory predicts
k0 ¼ 2kF ¼ 2ρπ, independently of the fermion dispersion
and the form of the fermion-lattice interaction. Remarkably,
we found the same relation for bosonic Peierls transitions
[inset (b) of Fig. 3], where the Fermi surface is absent. This
relation holds in the presence of next neighbor hopping
−t0

P
iðb̂†i b̂iþ2 þ H:c:Þ, where even hard-core bosons can-

not be mapped onto fermions [49]. This suggests that
Peierls transitions require a deeper theory unifying the
fermionic and bosonic cases.
There are no off-diagonal bosonic long-range orders

coexisting with the BOW order. We found superfluid, on-
site pair superfluid and intersite pair superfluid correlations
to decay exponentially in the BOW phases [41].
Additionally, the scaling of the entanglement entropy
shows that all BOW phases are gapped, although in the
case of iBOW phases the gap is probably quite small [41].
Therefore, the solitonic phases present in our model are
qualitatively different from those appearing in the extended
Bose-Hubbard model [50].
Interestingly, the iBOW phases are compressible, with

compressibility κ ¼ ∂ρ=∂μ ≠ 0. This is in contrast to the
behavior of many bosonic models, where the presence of a
gap and a diagonal or block-diagonal order usually implies
incompressibility. Figure 3 depicts the density ρ in terms
of μ for Δ ¼ 0.87. Here, a superfluid phase occurs for

(a) (b)

FIG. 2. Structure factor at k0 in terms of Δ. It allows one to
qualitatively distinguish between the iBOW and the uniform
SF phases. The exact location of the critical points (dotted lines)
is found through a finite-size scaling of the fidelity susceptibility
[41]. Inset: (a) Structure factor SðkÞ in the solitonic phase (S),
for ρ ¼ 0.733 and Δ ¼ 0.90. A clear peak is observed at
k0 ¼ 8π=15. (b) Finite-size scaling of SσðkÞ for ρ ¼ 0.55 (circles)
and ρ ¼ 0.85 (squares), for k ¼ k0ðρÞ (continuous line) and
k ¼ π (dashed line).

(a)

(b)

FIG. 3. Density ρ and maximum structure factor Smax in terms
of the chemical potential μ for Δ ¼ 0.87 and L ¼ 60. The
structure factor has nonzero values for the BOW phases. Plateaus
in the density are related to incompressible phases, but they can
also appear as finite size effects. Insets: (a) Scaling of the plateaus
Δμ for different system sizes for a cBOW phase (ρ ¼ 2=3) and for
a solitonic iBOWone (ρ ¼ 0.7) (b) k0 vs ρ for t0 ¼ 0 and t0 ¼ 0.2
(see main text).
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0 < ρ < 1=2, and BOW phases appear for 1=2 ≤ ρ < 1.
Finally, ρ ¼ 1 corresponds to a MI. The plateaus in the
μ − ρ line signal the incompressible phases, which, apart
from the MI, correspond to a cBOW phase at ρ ¼ 1=2 and
ρ ¼ 2=3. The finite size scaling of other plateaus [inset (a)]
reveals that the iBOW phases are indeed compressible.
In the hardcore limit, the presence of a gap, together with

a long-range order, and a nonzero compressibility can be
understood using the single-particle fermionic picture. For
increasing particle density, the added particles will not
occupy states above the gap. The k0 ¼ 2kF ¼ 2ρπ relation
means that the position of the gap will be adjusted to the
new Fermi level. The composite spin-particle system
avoids the gap penalty by the modification of the effective
lattice structure. For strongly correlated bosons the mecha-
nism is more complicated, as the Fermi energy picture is
lacking. However, many of the properties remain. In
particular, the relation k0 ¼ 2kF ¼ 2ρπ still holds.
Therefore, neither the presence of a gap nor long-range
order necessarily exclude compressibility. Nonetheless, the
commensurate orders are incompressible (cBOW). This
implies that these orders are more stable under small
changes of the chemical potential. Figure 3 shows the
maximum value of the structure factor (Smax

σ ) as a function
of μ. It is zero for the uniform phases (MI and SF) and it
changes continuously among the BOW phases, except for
the commensurate orders where it clearly stands out. Since
Smax
σ represents an order parameter, this behavior corre-

sponds to finite changes in the free energy as the density is
varied, meaning that these pinned wavelengths are ener-
getically more stable.
For a wide range of values of Δ, we calculate the plateau

size and the maximum structure factor in terms of μ. These
two properties are sufficient to identify all the phases of the
model. The results are summarized in the phase diagram
(Fig. 4). Inside the MI, the spins are uniform and hσ̂zi i
changes continuously from þ1 to −1 as Δ increases. As a
consequence, the boundary between this phase and the SF
is modified. The phase diagram also shows the extensions
of the BOW phases, the most stable one being cBOW1=2.
Experimental implementation.—To realize the proposed

model (1), we consider first a gas of ultracold bosonic
atoms in an optical lattice, described by the Bose-Hubbard
Hamiltonian. A second optical lattice, trapping either
neutral or charged atoms, is introduced, placing its minima
between two minima of the first lattice. The atoms
corresponding to the second lattice have two internal
d.o.f.—representing spin systems—and the potential is
deep enough to confine them [41]. As shown in
Refs. [23,25,51,52], in this situation, the hopping of the
moving particles between two neighboring sites is influ-
enced by the internal state of the corresponding spin, giving
rise to the desired boson-spin interaction. The on-site boson
interaction term can be influenced by the internal state of
the spins. However, this dependence is very weak [25], and

we neglect it here. The spin part of the Hamiltonian can be
implemented as follows: the energy difference between the
two spin states is obtained by introducing an external
magnetic field, and the spin flipping is enforced using
laser-assisted transitions between the two states. This strategy
is valid both when the impurity corresponds to a neutral atom
or to an ion. Although the boson-spin interaction α might be
difficult to tune in an experiment, the phases we show in this
work are present for a broad range of values of this parameter,
for a suitably chosen Δ. The different phases could be
detected by measuring the spin structure factor [53–55]
and the compressibility in the atomic system [56,57].
Summary.—We introduced a boson-spin Hamiltonian

that models the behavior of strongly correlated bosons on a
dynamical lattice, and demonstrated the possibility of
obtaining bosonic analogs of the Peierls phase. We char-
acterized the phases of the system in the quasiadiabatic
limit (slow lattice dynamics), using the spin structure
factor, entanglement entropy, and compressibility. We
found, besides the uniform SF andMI phases, compressible
and incompressible bond order waves. We also discussed
the possibility of implementing the model using ultracold
atoms and ions trapped in optical lattices. In the future, it
would be interesting to study more extensively the topo-
logical properties of the model, as well as the regime of
nonadiabatic spins.
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