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We study the topological properties of one-dimensional systems undergoing unitary time evolution.
We show that symmetries possessed both by the initial wave function and by the Hamiltonian at all times
may not be present in the time-dependent wave function—a phenomenon which we dub “dynamically
induced symmetry breaking.” This leads to the possibility of a time-varying bulk index after quenching
within noninteracting gapped topological phases. The consequences are observable experimentally through
particle transport measurements. With reference to the entanglement spectrum, we explain how the
topology of the wave function can change out of equilibrium, both for noninteracting fermions and for
symmetry-protected topological phases protected by antiunitary symmetries.
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In the past few decades, numerous examples of gapped
quantum many-particle systems with topologically non-
trivial ground states have been discovered [1,2]. Despite the
lack of a local order parameter, these states cannot be
smoothly connected to their topologically trivial counter-
parts without closing the bulk energy gap and removing
their characteristic gapless edge modes.
Central to the modern understanding of these phases is the

importance of symmetry constraints on the Hamiltonian,
through which a rich “periodic table” of noninteracting
fermionic topological phases emerges [3–6]. Such systems
can be characterized by bulk indices which capture global
features of the Bloch bands, generalizing the Chern number
for two-dimensional systems [7]. These indices are topo-
logical invariants: they are unchanged under symmetry-
respecting deformations of the Hamiltonian, provided the
gap does not close. More general symmetry-protected
topological (SPT) phases are also known to exist beyond
free fermions [8].
More recently, the topological properties of quantum

states far from equilibrium have been examined [9–21],
motivated by possibilities to study coherent dynamics
in cold atom experiments [22–24]. The Chern number
after a quantum quench has been shown to be constant in
time [15–18], a result that has often been assumed to be a
universal feature of all bulk invariants in noninteracting
fermionic systems [19,21]. However, existing studies leave
open the role of symmetry in the postquench state.
In this Letter we address the effects of symmetries on the

topology of one-dimensional (1D) quantum systems that
are out of equilibrium. We show that the bulk index of the
time-evolved wave function can vary in time. Surprisingly,
this can occur evenwhen theHamiltonian retains the required
symmetries at all times and remains within the same phase.
This behavior stems from a phenomenon that we call
dynamically induced symmetry breaking: after a quantum

quench, the symmetries of the time-dependent state do not
necessarily match those of the governing Hamiltonian. We
determine the dynamical behavior of the bulk index in all
symmetry classes for noninteracting fermions in one dimen-
sion, and show that the predicted dynamics of the bulk index
can be directlymeasured in experiment.We alsodescribehow
the bulk index relates to the topology of thewave function out
of equilibrium, using the entanglement spectrum [25].
We conclude by explaining the relevance of dynamically

induced symmetry breaking to interacting SPT phases, and
numerically demonstrate the consequences for the entan-
glement spectrum of time-reversal protected Haldane
phases. Our work highlights the difference between static
and dynamic protection of topological phases in general:
while the topological properties of a ground state may be
robust against time-independent symmetry-respecting
perturbations, the same is not necessarily true of time-
dependent symmetry-respecting perturbations.
Symmetry under dynamics.— At equilibrium, noninter-

acting fermionic topological insulators are classified into ten
symmetry classes according to the presence of the “generic”
symmetries of time-reversal (TRS), particle-hole (PHS), and
chiral (or sublattice) symmetry [4,26]. Note that in super-
conducting systems, PHS is not a physical symmetry, but
represents a redundancy in the Bogoliubov–de Gennes
equations [27]. Each of these symmetries imposes a con-
straint on the matrix Hij that defines the Hamiltonian Ĥ
via Ĥ ¼ ψ̂†

i Hijψ̂ j, where ψ̂
†
j creates a fermion in a state j.

These are [28]

TH�T† ¼ H TRS; ð1aÞ

CH�C† ¼ −H PHS; ð1bÞ

SHS† ¼ −H Chiral; ð1cÞ
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where T, C, and S are unitary matrices that satisfy
T�T ¼ �1, C�C ¼ �1, and S�S ¼ 1.
For systems with a unique ground state, the symmetries

(1) of the Hamiltonian are inherited by the ground state
wave function jΨi, and therefore by the single-particle
density matrix ρij ¼ hΨjψ̂†

i ψ̂ jjΨi, which itself fully char-
acterizes the state of noninteracting fermions. One finds [6]

Tρ�T† ¼ ρ TRS; ð2aÞ

Cρ�C† ¼ 1 − ρ PHS; ð2bÞ

SρS† ¼ 1 − ρ Chiral: ð2cÞ

This characterization of the symmetry properties of the
state (2) admits a natural generalization out of equilibrium.
We consider nonequilibrium states arising from a very
general quench protocol: the system is prepared in the
ground state of an initial Hamiltonian Hi at time t ¼ 0

and then evolves under some other Hamiltonian HfðtÞ,
which may itself vary in time in an arbitrary manner.
The single particle density matrix evolves as ρðtÞ ¼
UðtÞρð0ÞUðtÞ† under the time evolution matrix UðtÞ ¼
T exp½−i R t

0 dt
0Hfðt0Þ� (T denotes time-ordering). By

replacing ρ with ρðtÞ in Eq. (2), we can determine the
symmetries of the state at time t.
We find two general mechanisms by which the sym-

metries of the initial state can be broken for t > 0.
Explicit symmetry breaking.—If a symmetry of the

Hamiltonian changes between Hi and HfðtÞ, this symmetry
will not appear in the state at t > 0 [29]. This applies in simple
situations where a generic symmetry of the Hamiltonian is
lost, e.g., ifHi has chiral (sublattice) symmetrybutHfðtÞ does
not. However, it also applies in situations where a generic
symmetry is preserved, but thematrix (T,C, orS) that realizes
the symmetry changes.For example, even if chiral (sublattice)
symmetry is preserved, the sets of sites that constitute the
two sublattices could differ between Hi and HfðtÞ. (We
provide other examples in the Supplemental Material [30].)
Dynamically induced symmetry breaking.—Even if there

is no change in symmetry of the Hamiltonian—i.e., initial
and final Hamiltonians have the same symmetries, realized
by the same unitary matrices—we find that there can be a
change in the symmetry of the state purely due to unitary
dynamics. In this case the density matrix satisfies

TρðtÞ�T† ¼ ρð−tÞ TRS; ð3aÞ

CρðtÞ�C† ¼ 1 − ρðtÞ PHS; ð3bÞ

SρðtÞS† ¼ 1 − ρð−tÞ Chiral; ð3cÞ

where we have used ρð−tÞ to denote a fictitious system time
evolved by a time þt under the Hamiltonian −HfðtÞ.

Because in general ρð−tÞ ≠ ρðtÞ, we infer that, surpris-
ingly, TRS and chiral symmetries of the state are not
preserved under dynamics, because Eqs. (3a), (3c) are not
equivalent to the symmetry conditions Eqs. (2a), (2c). On
the other hand, the time-dependent PHS condition Eq. (3b)
is equivalent to the equilibrium case Eq. (2b), so PHS is the
one generic symmetry that is retained at all times.
In the following we will focus on quantum quenches

without explicit symmetry breaking.
Dynamics of the bulk index.—At equilibrium, the bulk

index that characterizes topology in one dimension is the
Chern-Simons (CS) invariant [6], or, equivalently, the Zak
phase αZ [36]

CS1 ≡ αZ
2π

≔
i
2π

Z

BZ
dkhuαk j∂kuαki; ð4Þ

expressed in terms of the ground state Bloch functions juαki
for occupied bands α (a sum over α for all occupied bands
is to be understood). The functions are assumed to vary
smoothly with wave vector k and are chosen to be periodic
in the Brillouin zone (BZ).
The CS invariant is only defined modulo 1, since gauge

transformations of the occupied Bloch states can change
CS1 by an integer. However, in the presence of TRS and/or
chiral symmetry, the integer part can be given physical
meaning through the use of certain symmetry-related gauge
choices [6]. Under such gauges, all equilibrium topological
invariants in one dimension can be deduced from quantized
(integer or half-integer) values of the CS invariant. These
quantized values, and hence the topological classification,
arise only when particular symmetry combinations are
imposed. The five nontrivial classes are listed in Table I
with their topological classifications under CS1ðt ¼ 0Þ.

TABLE I. Topological characterizations of 1D insulators in and
out of equilibrium. The five nontrivial classes in one dimension
are defined by the presence of TRS, PHS, and chiral symmetries
(T, C, S) according to Eq. (1), and their topologically distinct
values of CS1 in equilibrium are given. Asterisks denote cases for
which CS1 must be evaluated in a gauge specified by the TRS or
chiral symmetries. After time evolving under a Hamiltonian in the
same symmetry class, the fractional part of CS1ðtÞ either varies in
time, or stays fixed to its initial value. The possible values of
CS1ðtÞ mod 1 are given, which determine the topological
classification (Class.) out of equilibrium. Nontrivial wave func-
tions within this classification will also have degenerate entan-
glement spectra (Ent.).

Class T C S CS1ðt ¼ 0Þ CS1ðtÞ mod 1 Class./Ent.

AIII 0 0 1 Z=2� Varies [0, 1) 0
BDI þ þ 1 Z=2� Const. f0; 1=2g Z2

D 0 þ 0 Z=2 mod 1 Const. f0; 1=2g Z2

DIII − þ 1 Zmod 2� Const. 0 0
CII − − 1 Z� Const. 0 0
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We consider the effects of dynamically induced symmetry
breaking on CS1 in these five classes.
All states which possess PHS (classes BDI, D, DIII, and

CII) must have a CS invariant quantized to 0 or 1=2 up to
the addition of an integer [37]. As we have shown, PHS is
preserved under time evolution, and so the time-dependent
CS1ðtÞ must also be quantized for t > 0. Moreover,
assuming that all Hamiltonians are smooth in k space,
one can define a continuous PHS-preserving interpolation
between the initial and final states parametrized by the time
t, under which the fractional part of CS1ðtÞ cannot change.
The fractional part of CS1ðtÞ is therefore constant when
PHS is present.
States which do not possess PHS can have a CS invariant

quantized to half-integer values if there is a chiral symmetry
(class AIII). We have argued above that chiral symmetry
will in general undergo dynamically induced symmetry
breaking. Thus, for t > 0 the CS invariant need no longer
be quantized, and one expects CS1ðtÞ to vary in time. This
leads to the surprising finding that even when the initial and
final Hamiltonians satisfy the same (chiral) symmetry at all
times the bulk index becomes time dependent.
Relation to physical observables.—Remarkably, the

dynamics of the bulk index has directly observable con-
sequences even far from equilibrium. (This contrasts with
the Chern index for which the relationship with the Hall
conductance does not hold out of equilibrium [38,39].)
Specifically, the identification of CS1 with the bulk
polarization of the system (i.e. the centers of Wannier
states) [40] still holds beyond the adiabatic limit. To show
this, we calculate the mean current

hjðtÞi ¼ 1

2π

Z

BZ
dkhuαkðtÞj∂kĤ

f
kðtÞjuαkðtÞi

¼ 1

2π

Z

BZ
dkf∂k½huαkðtÞjĤf

kðtÞjuαkðtÞi�

− huαkðtÞjĤf
kðtÞj∂kuαkðtÞi − h∂kuαkðtÞjĤf

kðtÞjuαkðtÞig

¼ i
2π

Z

BZ
dk½h∂tuαkðtÞj∂kuαkðtÞi þ huαkðtÞj∂t∂kuαkðtÞi�

¼ d
dt

CS1: ð5Þ

We have integrated by parts, and used the periodicity of
juαki in the BZ. Thus, the time variation of CS1ðtÞ is
reflected in the postquench current and bulk polarization,
which can be measured in experiment. Note that no
assumption of any form of adiabaticity is required.
Wehave numerically verified that this relationshipbetween

the CS invariant and local current holds, even within the
bulk of a finite system. We consider spinless fermions,

represented by operators ψ̂ ð†Þ
j acting on the sites labeled

by j, with a hopping Hamiltonian Ĥ ¼ −
P

jðJ1ψ̂†
2jþ1ψ̂2j þ

J2ψ̂
†
2jþ2ψ̂2jþ1 þ B1ψ̂

†
2jþ3ψ̂2j þ B2ψ̂

†
2jþ4ψ̂2jþ1 þ H:c:Þ. In

general, the model possesses only a chiral sublattice sym-
metry (class AIII), but if all hopping amplitudes are real, TRS
and PHS are also present (class BDI). Figure 1(a) shows the
time variation of the CS invariants for AIII and BDI systems,
calculated as bulk integrals. This is compared to the bulk
polarization QBðtÞ in a finite system with the same hopping
amplitudes, calculated as the particle number in the right
subsystem B (see inset). The gauge-invariant QBðtÞ equals
CS1ðtÞ up to an integer, until correlations span the whole
system.Thus in one dimension, the change in theCS invariant
is directly measurable as particle accumulation.
Note that the time variation of CS1 can be seen in even

simpler models such as the SSH model [41] with complex
hopping amplitudes, i.e., our model with B1 ¼ B2 ¼ 0
(which is in class BDI). If the phases of either J1;2 change
across the quench, then TRS and PHS undergo explicit
symmetry breaking, and one finds the same behavior as
expected for an AIII quench: the dynamically induced
breaking of chiral symmetry allows CS1ðtÞ to vary (see the
Supplemental Material [30] for details).
Topological characterizations out of equilibrium.—We

have determined general features of the dynamics of the

(a) (b)

(c)

FIG. 1. Panel (a): Time-dependent CS invariant of a hopping
model of spinless fermions, calculated as a bulk integral in k space
(solid lines), compared with the polarization QBðtÞ of a
24-site open boundary system with the same parameters (dashed
lines). QBðtÞ is calculated as the expected particle number
within the right-hand half, subsystem B of the inset. The red
lines are for a BDI system and the blue lines are for an AIII system.
The parameters for the quenches are ðJ1; J2Þ ¼ ð0.3; eiαÞ →
ð0.8eiα; 1Þ with B1;2 ¼ 0.05 throughout; α ¼ 0 for class BDI
and α ¼ 0.4 for class AIII. The observables in the finite sample
match the dynamics of the bulk invariants even out of equilibrium,
until correlations traverse the whole system at which point the
discrete nature of k space invalidates Eq. (5). Panel (b): dynamics
of the entanglement gapΔE for the same systems as above with the
entanglement cut between A and B [inset of (a)]. In the BDI case,
the entanglement gap remains close to zero until correlations span
the system size, whereas the AIII system immediately becomes
gapped. Panel (c): dynamics of the entanglement gap for a spin-1
chain initialized in a Haldane phase, possessing TRS only (purple
line), and both TRS and dihedral symmetry (green line, scaled by
103). When the Haldane phase is supported by TRS only, the
entanglement spectrum becomes gapped for t > 0.
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bulk index. To what extent does this bulk index encode
topological features of the time-evolving state? One may
naïvely expect that the topology of the state is preserved as
long as CS1ðtÞ does not vary in time (as occurs for all
nontrivial classes other than AIII). However, this approach
overlooks the gauge dependence of CS1ðtÞ. An individual
measurement of CS1ðtÞ at some time t is still only defined
modulo 1. Unlike in equilibrium, this ambiguity cannot be
resolved by a symmetry-related gauge choice, since TRS
and chiral symmetries are broken by the dynamics.
Therefore, wave functions with the same CS1 modulo 1
cannot be distinguished by the bulk index and are thus
topologically equivalent.
Once we restrict ourselves to consider only CS1ðtÞ mod

1, we can determine a new classification of states which can
be topologically distinguished out of equilibrium; this is
given in the last column of Table I. Note that systems in
classes DIII and CII must be initialized with CS1 mod
1 ¼ 0, and hence all such systems are topologically trivial
for t > 0. A striking consequence of this is that two initial
equilibrium states with different topology can time evolve
into the same wave function, even though CS1 mod 1 does
not exhibit any time dependence; see the Supplemental
Material [30] for an example in class DIII.
One of the clearest signatures of topological nontriviality

in equilibrium is the presence of gapless edge excitations
[42], connected to the nontrivial bulk index through the
bulk-boundary correspondence. These edge modes also
manifest themselves within the ground state entanglement
spectrum [25], which mimics any physical edge modes that
would be present at a boundary [43,44]. In the present
nonequilibrium setting, the many-body wave function
jΨðtÞi can be thought of as the ground state of some
fictitious Hamiltonian ĤficðtÞ which possesses the same
symmetries as the state. For concreteness we can choose (in
a second-quantized language) [21,45]

ĤficðtÞ ¼ ÛðtÞĤiÛðtÞ†; ð6Þ

where ÛðtÞ is the many-body time evolution operator. The
equilibrium entanglement spectrum is a property of the
ground state only; therefore the entanglement spectrum of
jΨðtÞi encodes the equilibrium topology of ĤficðtÞ, which is
independent of our specific choice (6). If ĤficðtÞ cannot be
deformed to some trivial Hamiltonian without breaking the
enforced symmetries, then it must possess gapless boundary
modes [42], which themselves will show up in the entan-
glement spectrum of jΨðtÞi—this allows us to probe the
bulk-boundary correspondence out of equilibrium.
We now apply the equilibrium classification to ĤficðtÞ,

which, due to dynamically induced symmetry breaking,
will at most possess PHS only. When PHS is enforced,
ĤficðtÞ will be topological if and only if the CS invariant of
its ground state jΨðtÞi is a half-odd integer. We conclude

that in one dimension a vanishing entanglement gap ΔE
may only be supported for t > 0 in PHS systems which are
initialized with a noninteger CS invariant. This is exactly
the condition for topological nontriviality that we deduced
purely from CS1ðtÞ, summarized in the last column of
Table I. Thus we expect the bulk-boundary correspondence
to hold out of equilibrium, once CS1ðtÞ is interpreted
modulo 1.
We have verified these predictions by numerical calcu-

lations of the time evolution of the entanglement spectrum
for all symmetry classes in one dimension. Results for the
contrasting cases of classes AIII and BDI are shown in
Fig. 1(b). While our arguments have focused on transla-
tionally invariant noninteracting systems, our results on the
entanglement spectrum and topological classification
should be robust against symmetry-preserving disorder,
as well as weak interactions.
In passing, we note that the quench protocol we have

used throughout includes Floquet systems as a subset.
Indeed, in that context PHS is found to play a different role
to TRS and chiral symmetries [46,47]. Our results show
that the connection between bulk indices and particle
transport, which appears in Floquet systems as adiabatic
pumping [46], holds much more generally, not requiring
periodicity or adiabaticity. However, our topological char-
acterization of the instantaneous wave function is distinct
from the recently classified Floquet SPT orders [48–50],
which refer to micromotion over a whole period, and
cannot be inferred from, e.g., the entanglement spectrum
at some fixed time [50]. The preservation of entanglement
degeneracies in class D Floquet systems (where no
dynamically induced symmetry breaking occurs) has also
previously been observed numerically [51].
Interacting SPT phases.—Our consideration of noninter-

acting fermionic phases reveals the existence of a non-
equilibrium topological classification which differs from
equilibrium. One expects a similar nonequilibrium classi-
fication also for interacting systems, e.g., SPT phases of
bosons protected by more general symmetries. Indeed
dynamically induced symmetry breaking, which is a crucial
ingredient, can occur in any system: we show in the
Supplemental Material [30] that if a symmetry of the
Hamiltonians is realized by an antiunitary second-quantized
operator Ô [52], then jΨðtÞi will generically not respect that
symmetry. Of the three symmetries considered in the main
text, only PHS is unitary [53], and so the results agree.
Unlike for free fermions, a universal bulk index analo-

gous to Eq. (4) does not exist for all 1D SPT phases.
Nevertheless, one can still derive a nonequilibrium classi-
fication of SPT phases (using, e.g., projective symmetry
representations [54–56]) which will be reflected in the
dynamics of the entanglement spectrum. For example,
in the case where only one symmetry is present, it is clear
that topology is lost (preserved) if the symmetry is
antiunitary (unitary).
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We demonstrate this behavior for the spin-1 Haldane
phase, which can be protected by a unitary dihedral
symmetry, or by antiunitary TRS [57]. We have numeri-
cally investigated the fate of entanglement degeneracies
after a quench that does not explicitly break symmetry.
We plot the results in Fig. 1(c). (Details are given in the
Supplemental Material [30].) In the TRS-protected case,
the entanglement degeneracy is lifted for t > 0, indicating
the expected breakdown of the Haldane phase due to
dynamically induced symmetry breaking.
In summary, we have studied the role played by

symmetries in the topological classification of 1D systems
that are out of equilibrium, and identified the important
phenomenon of dynamically-induced symmetry breaking.
It will be of interest to extend these studies to other
dimensions and to classify all SPT phases out of equilib-
rium in future work.
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