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We show that sharply defined topological quantum phase transitions are not limited to states of matter
with gapped electronic spectra. Such transitions may also occur between two gapless metallic states both
with extended Fermi surfaces. The transition is characterized by a discontinuous, but not quantized, jump in
an off-diagonal transport coefficient. Its sharpness is protected by a symmetry, such as, e.g., particle-hole
symmetry, which remains unbroken across the transition. We present a simple model of this phenomenon,
based on 2Dpþ ip superconductor with an applied supercurrent, and discuss its geometrical interpretation.
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The advent of topological insulators and semimetals
[1–5] brought the realization that states of matter may be
distinguished by subtle topological indices. The very
existence of such indices primarily relies on symmetries
of the system, rather than its specific Hamiltonian [5–10].
States with different topological indices are separated by
sharp quantum phase transitions (QPT), which are often
associated with quantized jumps of certain transport coef-
ficients (such as, e.g., Hall conductance in integer quantum
Hall effect [11]). Traditionally, topological QPT are dis-
cussed between two gapped phases, e.g., insulators or
superconductors. Recently it was realized that Weyl semi-
metals [12,13] may exhibit genuine QPT between gapless
states, if the chemical potential is tuned to a nodal Weyl (or
Dirac) point [14,15]. For example, in Weyl semimetals with
mirror symmetry, the Hall conductance exhibits a discon-
tinuous quantized jump [16,17].
The goal of this Letter is to point out that the topological

transitions are not limited to the gapped states ofmatter, or to
states with the point Fermi surface. Instead, theymay persist
well into a truemetallic statewith an extended Fermi surface
and a finite density of delocalized states at the chemical
potential. Consequently, there are sharp QPTs between
topologically distinct metallic (as opposed to semimetallic
or insulating) phases. Onemay dub them topological metals
(TM) to distinguish them from ordinarymetals. Across QPT
between TM and a metal, a physical observable, associated
with the topological index (e.g., an off-diagonal conduc-
tivity), exhibits a discontinuous jump. In contrast to topo-
logical QPT in insulators or semimetals, such a jump is not
quantized. The topological QPT in metals should be
necessarily protected by some symmetry. In the absence
of any symmetry, the metallic QPT gives way to a smooth
crossover, invalidating the sharp designation of the TM
phase. Doped Weyl semimetals [13,18–20] (sometimes
called topological metals) are usually examples of this latter
scenario, as discussed below.

To illustrate these ideas we shall use a two-dimensional
(2D) example, which belongs to the symmetry class D
[3–5,9,21]. This class is realized, for example, by pþ ip
superconductors [22–24], which break time reversal sym-
metry and the only protected symmetry is the particle-hole
one. The latter is encoded within the Nambu structure of the
corresponding Bogoliubov–de Gennes (BdG) Hamiltonian,
HBdGðkÞ, where k is a quasi momentum in a 2D Brillouin
zone (BZ), as [3,5]

P−1HBdGðkÞP ¼ −HBdGð−kÞ: ð1Þ

Here P ¼ σxK, where K is complex conjugation operator
and σx is the Pauli matrix in Nambu space with the basis
Ψk ¼ ðck; c†−kÞT . A generic Hamiltonian has a form

HBdGðkÞ ¼ d0ðkÞ þ dðkÞ · σ; ð2Þ

where d0ðkÞ and dðkÞ ¼ ðdx; dy; dzÞ are functions of
momentum. The particle-hole symmetry, Eq. (1), restricts
d0;x;yðkÞ to be odd, while dzðkÞ is even, under k ↔ −k. The
spectrum consists of two bands with energies

ϵð�Þ
k ¼ d0ðkÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2xðkÞ þ d2yðkÞ þ d2zðkÞ

q
; ð3Þ

which may only touch when d ¼ 0. In the simplest example
of the square lattice [1,25], d0 ¼ 0, dx ¼ −2Δ sin ky, dy ¼
−2Δ sin kx, and dz ¼ −2t cos kx − 2t cos ky − μ, where t, μ,
and Δ are the hopping parameter, chemical potential, and p
wave pairing amplitude, correspondingly. The spectrum (3)
is fully gapped everywhere away from the topological QPT.
The later takes place at μ ¼ ∓4t and results in a gapless
point at k ¼ ð0; 0Þ, or ðπ; πÞ, correspondingly.
The topological properties stem from the homotopy

group Z [3–5] associated with the mapping of the 2D

PHYSICAL REVIEW LETTERS 121, 086810 (2018)

0031-9007=18=121(8)=086810(5) 086810-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.086810&domain=pdf&date_stamp=2018-08-24
https://doi.org/10.1103/PhysRevLett.121.086810
https://doi.org/10.1103/PhysRevLett.121.086810
https://doi.org/10.1103/PhysRevLett.121.086810
https://doi.org/10.1103/PhysRevLett.121.086810


BZ (torus) onto the 3D space spanned by the vector d.
[Notice that d0ðkÞ component, being commutative with the
Hamiltonian, is not related to the topology; it may be
important however in assigning occupation numbers to
states with momentum k.] The image of BZ, k ∈ BZ, is a
closed 2D surface dðkÞ in the 3D d space, with an integer Z
wrapping around the gapless point d ¼ 0. The topological
QPT, associated with the change of the integer wrapping
number, occurs if the gapless point d ¼ 0 lies on the BZ
image (in our example this only happens at μ ¼ ∓4t), see
Fig. 1. In the cylindrical geometry of Fig. 2, the topological
index counts a number of gapless chiral modes localized
near the two edges of the cylinder.
The physical quantity, sensitive to the topological index,

is the intrinsic (anomalous) Hall conductance. In the case of
the superconductor, the object of interest is the thermalHall
conductance σintxy , given by the ratio of the thermal current in
the x direction to the temperature gradient applied in the y
direction, see Fig. 2. It originates from the anomalous
velocity of Bloch electrons due to the Berry curvature term
[26,27] in the semiclassical equations of motion. According
to the Kubo-Středa formula [25,28], the anomalous thermal
Hall conductance (in unit of ðπk2B=12ℏÞT) is given by the
integrated Berry curvature

σintxy ¼
X
n

Z
BZ

d2k
ð2πÞ2 fðϵ

ðnÞ
k ÞΩðnÞ

z ðkÞ; ð4Þ

where ΩðnÞ
z ðkÞ is the z component of the Berry curva-

ture, defined as the momentum space curl of the
Berry connection ΩðnÞðkÞ ¼ ∇k ×AðnÞðkÞ and AðnÞðkÞ ¼
huðnÞðkÞji∇kjuðnÞðkÞi. Here juðnÞðkÞi is a Bloch wave

function in the band n and fðϵðnÞk Þ is the Fermi function.
A fully gapped system at a temperature T much less than

the gap found in Eq. (4) leads to a quantized anomalous
conductance. For example, the gapped two-band model,
described by the Hamiltonian (2), results in

σintxy ¼
Z
BZ

d2k
ð2πÞ2 ð∂kxd × ∂kydÞ ·

d
2jdj3 : ð5Þ

This expression may be viewed as a flux of a monopole,
located at d ¼ 0, through the closed surface dðkÞ, see
Fig. 1. Indeed, d2kð∂kxd × ∂kydÞ is the area element of the

surface, while ðd=2jdj3Þ is the field strength of the
monopole with the unit “charge.” Because of Gauss’s
law, such a flux is quantized and proportional to the integer
wrapping number Z of the BZ image dðkÞ around d ¼ 0.
This is the essence of the familiar conductance quantization
in topological insulators [1,2,29,30].
Let us now modify the model to bring it to the metallic

state. The simplest way of doing it is to introduce a
magnetic flux Φ through the cylinder of Fig. 2. The flux
induces the supercurrent in the x direction, breaking the

reflection symmetry, ϵðnÞ−k ≠ ϵðnÞk . In the presence of the flux,
the order parameter acquires a spatial dependence:
Δðx; yÞ ¼ ΔeiQx, where Q ¼ Φ=ðNΦ0Þ with N number
of lattice periods around the cylinder [31]. Upon a gauge
transformation, this leads to the Hamiltonian (2) with the
following parameters:

d0 ¼ 2t sin kx sinQ=2;

dx ¼ −2Δ sin ky; dy ¼ −2Δ sin kx;

dz ¼ −2t cos kx cosQ=2 − 2t cos ky − μ: ð6Þ

FIG. 1. Brillouin zone mapping onto closed dðkÞ surface in 3D
d space for t ¼ 1, Δ ¼ 0.5. The monopole, located at the origin
d ¼ 0, is shown in red. Trivial phase is shown for μ ¼ −5,
topological phase for μ ¼ −2.5. The Berry flux through the
surface is zero in the trivial phase and quantized in units of the
monopole charge in the topological phase.

FIG. 2. Schematic geometry of the system discussed in the text.
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Notice that the particle-hole symmetry (1) and symmetry
classD are still intact and so is the topological quantization
of σintxy , as long as the spectrum (3) remains fully gapped.
This is indeed the case for sufficiently small flux
jQj < QL ¼ 2 arcsinðΔ=tÞ. Figure 3(a) shows spectrum
for the cylindrical geometry of Fig. 2, which clearly
exhibits chiral edge modes at Q ¼ 0.1 < QL. It also shows
dðkÞ surface, which encloses the monopole at d ¼ 0.
At jQj ¼ QL the system undergoes the Lifshitz transition

[32,33] into a metallic state. This is shown in the upper row
of Fig. 3(b), where one can clearly see two metallic
bands: one is particlelike and the other is holelike. The
corresponding Fermi surface consists of two disconnected
closed curves in the 2D BZ. However, this is not yet the
topological QPT, as one may notice by the presence of the
chiral edge modes in the spectrum of Fig. 3(b). Since the
edge modes coexist now with the bulk states at the Fermi
level, one does not expect a quantized thermal Hall
conductance. Indeed, Eq. (5) for the intrinsic conductance
is still valid with the understanding that the integral runs
only over the k states with one occupied band (at T ¼ 0).

Thus the dðkÞ surface develops two holes—the images of
the 2D Fermi curves.
To understand it geometrically, one may notice that

d0 ¼ −ðt=ΔÞ sinðQ=2Þdy and therefore the equations for

the Fermi curves ϵð�Þ
k ¼ 0 acquire the form [cf. Eqs. (3)

and (6)]

d2x þ
�
1 −

sin2ðQ=2Þ
sin2ðQL=2Þ

�
d2y þ d2z ¼ 0; ð7Þ

where sinðQL=2Þ ¼ Δ=t. For jQj > QL this condition
spells the double cone in the d space with the apex at
the monopole d ¼ 0. The images of the Fermi curves are
thus found as the intersections of the cone, Eq. (7), with the
closed surface dðkÞ, Figs. 3(b)–3(d). The flux of the
monopole, which contributes to σintxy , Eq. (5), is therefore
less than the quantized value by the amount of the flux
channeled through the cone (7)

σintxyðQÞ ¼ sin
QL

2

.���� sinQ2
����; ð8Þ

FIG. 3. The three rows show spectra as a function of kx, BZ with the Fermi surfaces, 3D d space with the dðkÞ surface (gold),
monopole at d ¼ 0 (red) and Fermi double cone, Eq. (7), (blue). The four columns correspond to different values of flux Q:
(a) topological superconductor; (b) topological metal; (c) topological QPT; (d) ordinary metal. Figure 5 specifies other parameters.
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where j sinðQ=2Þj ≥ sinðQL=2Þ, see Fig. 4. The phase
diagram of the system is schematically depicted in
Fig. 5. At the Lifshitz transition, the system goes from
the topological insulator (superconductor) phase to the TM
phase. It is characterized by the coexistence of the bulk
states at the Fermi level with the chiral edge modes. The
latter are responsible for the intrinsic contribution to the
thermal Hall conductance, which is not quantized.
It turns out that the Lifshitz transition is followed

by another transition at jQj ¼ QTðμÞ > QL, where
cosðQT=2Þ ¼ 1 − ðjμj=2tÞ. This second transition separates
two topologically distinctmetallic phases. At the transition,
the two Fermi curves touch each other at the single point
d ¼ 0, see Fig. 3(c). On the other side of the transition, the
two Fermi curves separate again, see Fig. 3(d), and the edge
states disappear. In the 3D d space, the apex of the cone (7)
crosses the surface dðkÞ and the Berry flux of the
monopole, Eq. (5), undergoes a discontinuous jump down
to zero. The nonquantized height of the jump is given by
δσintxy ¼ sinðQL=2Þ= sinðQT=2Þ < 1, cf. Eq. (8).

The sharp topological QPT at QT allows for unambigu-
ous distinction between TM and the ordinary metal states.
This sharp distinction is protected by the particle-hole
symmetry, Eq. (1). Indeed, since the surface dðkÞ is
punctured by the holes created by the Fermi curves, one
may expect the Berry flux and σintxy to evolve to zero in a
smooth, continuous way. This is the case if the gapless
point d ¼ 0 moves (as a function of some parameter)
through one of those Fermi punctures. Such a scenario,
invalidating the notion of the sharp TM phase, takes place
in doped Weyl semimetals. There the monopole, moving as
a function of kz (the momentum in the direction connecting
the two nodes) [13,18,19], goes through the Fermi hole,
smearing the topological transition [34].
In our case, the particle-hole symmetry, Eq. (1) (in Weyl

materials it is broken by doping), ensures that the d ¼ 0
point cannot fall inside any of the Fermi punctures, but can
only simultaneously touch both of them. The double cone
construction, Eq. (7), is a geometric manifestation of the
symmetry (1). It shows that the Berry flux through the
punctured dðkÞ surface must change discontinuously at the
topological QPT.
Let us now briefly discuss the role of disorder. The latter

has two distinct effects on the discussed phenomena. In the
metallic phase (being treated beyond the Born approxima-
tion), it generates additional contribution to the thermal
Hall conductance, known as the skew scattering [35–41],
see Fig. 4. Its specific value depends on the details of the
disorder [38,39] and may exceed the intrinsic contribution,
discussed here. The important observation is that the skew-
scattering contribution, being a bulk phenomenon, is
continuous across the topological phase transition at
Q ¼ QT [42]. It therefore does not alter the discontinuity
in σxy, but merely adds a smooth background.
The second effect of the disorder is associated with the

modification of the intrinsic contribution itself. We per-
formed numerical simulations on small (way smaller than
the localization length) lattices in the cylindrical geometry
[42]. It showed that, for each disorder realization, the
discontinuity σintxy exists, though its location and height
fluctuate from one realization to another. In the thermody-
namic limit, we expect the Anderson localization to stabilize
the topological transition [43–47] in a way similar to the
integer quantum Hall effect. However, such a transition
separates the now topologically distinct Anderson insulator,
rather than metallic, phases. Though a full theory of such a
transition in 2D class D [46] is still absent, it is likely that
localization restores the quantization of σxy.
To conclude, we have shown that the sharp definition of

the topological states may be extended onto a gapless
metallic phase. An unbroken symmetry is required to
enforce the identity of such a topological metal state. As
an example, we worked out class D [48], pþ ip super-
conductor subject to a supercurrent. The TM phase,
protected by the particle-hole symmetry, appears in a

FIG. 4. Thermal Hall conductance (in unit of ðπk2B=12ℏÞT) vs
flux. QL and QT are the location of Lifshitz and topological
transitions. Solid line—the intrinsic contribution, Eq. (5); dashed
line—(schematic) skew-scattering contribution in T → 0 limit.

FIG. 5. Phase diagram of the model Eqs. (2) and (6) on
chemical potential vs flux plane. I—topological insulator (super-
conductor); II—topological metal; III—ordinary metal; IV—
ordinary insulator. Solid red lines—topological QPT; solid black
lines—Lifshitz transitions. Red stars show parameters of columns
(a)–(d) in Fig. 3.
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certain finite range of the supercurrent densities. It may be
detected by a jump of the thermal Hall conductance,
associated with the discontinuous change of the Berry
curvature flux.
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