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24 rue Lhomond, 75005 Paris, France

(Received 7 May 2018; published 24 August 2018)

Entanglement properties are routinely used to characterize phases of quantum matter in theoretical
computations. For example, the spectrum of the reduced density matrix, or so-called “entanglement
spectrum”, has become a widely used diagnostic for universal topological properties of quantum phases.
However, while being convenient to calculate theoretically, it is notoriously hard to measure in
experiments. Here, we use the IBM quantum computer to make the first ever measurement of the
entanglement spectrum of a symmetry-protected topological state. We are able to distinguish its
entanglement spectrum from those we measure for trivial and long-range ordered states.
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Introduction.—The patterns of entanglement between
local degrees of freedom (d.o.f.) are a fingerprint of many-
body quantum phases [1–3]. Various measures for quantum
entanglement capture different universal aspects of quantum
states and allow for their classification. Of these measures,
the entanglement spectrum, obtained from the spectrum of
the reduced density matrix of a bipartitioned quantum
system, reveals the most detailed information. It was first
used in thisway byLi andHaldane [4],who characterized the
topological order of a fractional quantum Hall system by
matching its low-lying entanglement level counting to the
universal level structures of conformal field theories.
Entanglement spectroscopy further became an important

tool in identifying symmetry-protected topological states of
matter (SPTs) [1,2,5–8]. The defining property of a SPT is
that it cannot be connected to a trivial product state via a
finite-depth quantum circuit of local symmetry preserving
unitary operations. SPTs are not topologically ordered
in the sense of the fractional quantum Hall effect, but
still feature a topological bulk-boundary correspondence:
(in one dimension) they always support gapless boundary
excitations in an open geometry, as long as the boundary
does not break the protecting symmetry. This bulk-
boundary correspondence is also manifested in the entangle-
ment spectrum: the bipartitioning used to define the reduced
density matrix introduces a “virtual” boundary between parts
A andBof the system, and in aSPT topological excitations are
associated with this virtual boundary leading to protected
degeneracies in the entanglement spectrum [9].
While entanglement spectra conveniently characterize

many-body quantum states in numerical simulations, they
are intrinsically hard to measure in condensed matter

experiments. It is only recently with the improvements
in trapped ions and superconducting quantum simulators
that the entanglement entropy [10] or density matrix [11] of
many-spin systems have been accessed [12,13]. The recent
release of the IBM cloud quantum computing service
allows one to test various conceptual ideas on an actually
existing quantum simulator [14]. Several recent works
characterize the entanglement properties of the IBM
devices [15] and use them to test various quantum
algorithms [16–22] and to solve physical demonstration
problems [23,24]. Here, we show that the high level of
control that can be reached on the IBM digital quantum
computer allows one to both prepare a SPT state and to
measure its entanglement spectrum.
Topology in quantum paramagnets.—SPT phases are

gapped short-ranged entangled states with a protecting
symmetry. In this Letter, we are interested in SPT phases of
one-dimensional paramagnets arising in a chain of spin-1=2
d.o.f. with local quantum states j↑i and j↓i at each site
(corresponding to a chain of qubits on the IBM quantum
computer). According to the classification of SPT phases
[1], such one-dimensional bosonic systems support a
topologically nontrivial phase protected by time-reversal
symmetry T with T 2 ¼ þ1. We choose the representation
T ¼ K

Q
iσx;i, where K is complex conjugation and σμ;i is

the Pauli operator with μ ¼ 0; x; y; z acting on site i of the
chain (σ0 being the identity operator).
A trivial paramagnetic state invariant under T is given by

the ground state of

Htriv ¼ −
X

i

σx;i; ð1Þ
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which, for the example of a chain of length N, is a trivial
product state,

jPMi ¼ 1ffiffiffiffiffiffi
2N

p
X

r

jri ¼ jþi⊗N
; ð2Þ

where r represents all possible binary strings of length N
and jþi is the eigenstate of σx with eigenvalue þ1.
On the other hand, a topologically nontrivial SPT state

protected by T is given by the ground state of the stabilizer
Hamiltonian [25],

Htopo ¼ −
X

i

σz;i−1σx;iσz;iþ1; ð3Þ

with periodic boundary conditions imposed. Since all
terms in Htopo commute, its unique ground state jSPTi
is defined by

σz;i−1σx;iσz;iþ1jSPTi ¼ jSPTi; ∀ i: ð4Þ

This state is the so-called graph state, which can be used as a
key resource to achieve one-way quantum computation
[26,27]. It is also topologically equivalent to thewell-known
Affleck-Kennedy-Lieb-Tasaki (AKLT) state [28,29].
We now discuss how to distinguish the trivial Eq. (2) and

nontrivial SPT ground states Eq. (4). The classification of
one-dimensional SPT phases in Ref. [1] is based on the fact
that in one dimension any paramagnetic or short-range
correlated state can be transformed into a trivial product
state via a local unitary (LU) transformation. However, if
the paramagnetic state is a nontrivial SPT, some of the local
operations comprising such a LU transformation neces-
sarily break the protecting symmetry. LU transformations
are well approximated by finite-depth quantum circuits
[30]. To define a quantum circuit, we first introduce the
piecewise local unitary operators,

ŨP ¼
Y

i∈P
Ui; ð5Þ

where Ui is a set of unitary operations acting on non-
overlapping local regions listed in the set P. For the IBM
quantum computer the only available multiqubit gate is a
CNOT gate; that is, Ui acts on sites i and iþ 1. The full LU
transformation is then given by a finite product of M
piecewise unitaries of the form of Eq. (5):

UM
LU ¼ ŨP1

� � � ŨPM
: ð6Þ

A LU transformation that transforms the SPT state jSPTi
[Eq. (4)] into the trivial product state jPMi [Eq. (2)] is
obtained by choosing

Ui ¼
1

2
σ0;iðσ0;iþ1 þ σz;iþ1Þ þ

1

2
σz;iðσ0;iþ1 − σz;iþ1Þ; ð7Þ

which represents a controlled-Z gate between spin i and
iþ 1. Further using M ¼ 2 with P1 and P2 containing all
even and all odd sites, respectively, one obtains

jPMi ¼
Y

i

UijSPTi ð8Þ

as the LU transformation. Since U2
i ¼ 1, the same LU

transformation can be used to construct the state jSPTi
from jPMi. The quantum circuit corresponding to

Q
iUi is

shown in Fig. 1(d). It is straightforward to see that none of
the Ui commute with T , as expected for a nontrivial SPT
state jSPTi and a trivial product state jPMi.
Another characterization of the SPT state is that with

open boundary conditions, Hamiltonian Eq. (3) supports
gapless excitations localized at the chain end. To see this,
notice that the operators σx;1σz;2, σy;1σz;2, and σz;1 all
commute with the Hamiltonian and form a Pauli algebra.
They thus enforce a twofold degeneracy of the ground state
associated with a localized excitation at the boundary. Since
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FIG. 1. (a) Layout of the qubits and two-qubit gates (arrows) in the IBM quantum computer ibmqx5. Blue and red qubits were used to
measure entanglement spectra and formed subsystem A and B of the simulated quantum spin chain (with periodic boundary conditions),
respectively. (b)–(d) Circuits used for constructing the quantum states, where H stands for a Hadamard and þ for a CNOT gate,
respectively. (b) Constructs the ground state of the trivial paramagnet. (c) Constructs the eight qubit cat state (also “GHZ state”).
(d) Constructs the ground state of a topological paramagnet (also “graph state”). Hadamard gates that appear next to each other are
automatically removed. (e) Symbols for the various logic gates.
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all these operators are odd under T , they cannot be added as
perturbations to the Hamiltonian and we conclude that the
gapless topological end excitation is protected by T .
Entanglement spectrum.—For any quantum state jψi,

the reduced density matrix of subsystem A (some subset of
the lattice) is given by the partial trace of the full density
matrix ρ ¼ jψihψ j over the complementary subsystem
B ¼ Ac, i.e.,

ρA ¼ TrBρ: ð9Þ

The entanglement spectrum is then the set of numbers λi,
i ¼ 1;…; NA, where e−λi are the eigenvalues of the
operator ρA and NA is the dimension of the Hilbert space
describing all d.o.f. in subsystem A. The entanglement
spectrum can reveal information about universal, in par-
ticular, topological, properties of the state jψi. For example,
if the bipartitioning is realized by a cut separating a linear
chain into a left and a right half, it has been argued [6] that
nontrivial SPT phases have entanglement spectra whose
low energy spectra are in one-to-one correspondence with
the spectrum of the system in the presence of a boundary.
This statement can be proved straightforwardly for non-
interacting free-fermion systems [31]. For the case at hand,
we study a chain with periodic boundary conditions, so that
a an entanglement cut introduces two virtual boundaries
between parts A and B. If each cut comes with a twofold
degeneracy, we expect a 2 × 2 or fourfold degenerate
entanglement spectrum of the SPT. In contrast, no degen-
eracies are expected in the low-lying entanglement spec-
trum of the trivial PM phase, as it has no protected
boundary modes. The degeneracy is thus a useful diag-
nostic for identifying topological phases.
We obtain the entanglement spectrum by measuring the

reduced density matrix of the subsystem. Given any
reduced density matrix ρA we can decompose it into a
sum of Pauli matrices. For a n-spin subsystem at sites
1;…; n, we have

ρA ¼
X

α1���αn
cα1���αn

1

2n
σα1;1σα2;2 � � � σαn;n; ð10Þ

where 1=2n is a normalization factor and the indices αi,
i ¼ 1;…; n, run over the set f0; x; y; zg. The aim then is to
obtain the coefficients cα1���αn given that we have access to
the full density matrix. Since the Pauli matrices are
orthogonal under the trace norm, the coefficients are
given by

cα1���αn ¼ TrA½σα1;1σα2;2 � � � σαn;nρA�
¼ TrA½σα1;1σα2;2 � � � σαn;nTrBðρÞ�
¼ TrATrB½σα1;1σα2;2 � � � σαn;nρ�
¼ Tr½σα1;1σα2;2 � � � σαn;nρ�: ð11Þ

This means that in order to obtain the coefficients cα1���αn ,
we need only measure all the Pauli operators corresponding
to subsystem A. For 4 spins, and ignoring the identity
operator, this gives 44 − 1 ¼ 255 measurements.
After obtaining the coefficients, we reconstruct the

reduced density matrix according to Eq. (10) and we
numerically diagonalize ρA to obtain the entanglement
spectrum.
Results.—We consider the different quantum states on a

system of 8 spins (qubits): the trivial paramagnet jPMi
from Eq. (2), the cat state,

jcati ¼ 1ffiffiffi
2

p ðj00000000i þ j11111111iÞ; ð12Þ

and the SPT state (graph state) as defined in Eq. (4). We
construct these states on the IBM 16 qubit quantum
computer ibmqx5 using the quantum circuits shown
in Fig. 1.
To obtain the reduced density matrix, we have to obtain

the expectation values of the Pauli operators according to
Eq. (10). Since each measurement gives only a 0 or 1, the
experiment consisting of state preparation and measure-
ment is repeated multiple times in order to estimate the
expectation value. The results we show are taken with 1024
repetitions all executed within about 15 min on the
quantum computer. See the Supplemental Material for
performance characteristics of the quantum computer (as
well as further information about the measurements) [32].
There are several sources of error which prevent us from

exactly reproducing the density matrix. These errors could
lead to unphysical density matrices with negative eigenval-
ues. The standard way to avoid this is to use a maximum
likelihood estimator [33] to obtain the closest physical
densitymatrix based on the estimated one. All entanglement
spectra obtained is shown in Fig. 2 (In the Supplemental
Material, we provide the calibration data of the ibmqx5 for
the day where the measurement of Fig. 2(c) was taken. We
also show in Fig. 1 of the Supplemental Material [32] the
entanglement spectra obtained another day and thus with
another calibration set. While there is some variation
between measurements on different days, the qualitative
picture remains unchanged).We now list the various sources
of error.
The repeated measurement gives rise to a statistical

noise. For example, if the observable σz in the state jþi ¼
ð1= ffiffiffi

2
p Þðj0i þ j1iÞ is measured 100 times, within 1 stan-

dard deviation, one may obtain 55 times “0” and 45 times
“1”, and would conclude that hσzi ¼ 0.1 instead of the
exact 0. To estimate the scale of the latter error, we
computed the probabilistic outcome of 1024 × 256 mea-
surements on the exact states for each of the three cases
jPMi, jcati, jSPTi. The entanglement spectra computed
from the resulting estimate of the density matrix are plotted
in Fig. 2 in the column “Ideal”.
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Additionally, errors in the real quantum computer arise
from a finite coherence time of the qubits, as well as errors
involved in implementing the gates and in reading out the
qubits. They account for the difference between the columns
“Ideal” and “IBM” (the latter obtained from the actual
measurement) in Fig. 2. To quantify the statistical noise in
the latter, we have generated a distribution of eigenvalues of
reduced density matrices drawn from their distribution (see
Supplemental Material for details [32]). The distributions
are shown in the respective right-hand panels in Fig. 2. They
show a robust entanglement gap in each of the cases jPMi,
jcati, jSPTi, with the expected one, two, and four states
above the gap. The fourfold degeneracy of the entanglement
spectrum of jSPTi is only approximate in the measurement
due to a combination of statistical noise and more impor-
tantly also the errors present in the quantum computer.
Using the measured reduced density matrices, we can

further compute various entanglement measures. In Sec. IV
of the Supplemental Material [32], we give the von
Neumann entropy S1;A ¼ −TrA½ρA log ρA� and the second
Renyi entropy S2;A ¼ − log TrA½ρ2A�. The entanglement
structure of gapped ground states of local Hamiltonians
in one-dimensional systems is short-ranged. This property
can be studied via the mutual information

IðA; BÞ ¼ S1;A þ S1;B − S1;AB; ð13Þ
where A and B are two subsystems. For the 8-site chain that
we study, A, B consist of two adjacent sites each. A, B can
then be a distance d ¼ 0, d ¼ 1, or d ¼ 2 sites apart, owing
to the periodic boundary conditions. We measured the
density matrix on the four sites comprising subsystems
A, B for d ¼ 0, 1, 2 in each of the three prepared states
jPMi, jcati, and jSPTi. The results, summarized in Fig. 3,

are qualitatively consistent with the following theoretical
facts. (i) The mutual information of jcati cannot be a gapped
ground state of a local Hamiltonian, as its mutual informa-
tion does not decay with distance, and (ii) jSPTi has only
local entanglement that decays with distance. Furthermore,
(iii) jPMi is a local product state with vanishing correla-
tions, as even for d ¼ 0 the mutual information vanishes; in
our data, this mutual information does not vanish, but it is
certainly smaller compared to the two other states. The

d=0 d=1 d=2

(a)

(b)

FIG. 3. (a) Measured mutual information between two regions
of the 8-site spin chain. The results are obtained from the
measured reduced density matrices, measured in the same way
as for Fig. 2. The theoretically exact values are IðA; BÞ ¼ 0 and
IðA; BÞ ¼ log 2 for all d in the case of jPMi and jcati,
respectively, and IðA; BÞ ¼ 2 log 2; log 2; 0 for jSPTi at distances
d ¼ 0, 1, 2, respectively. (b) Schematic depiction of subsystem A
(blue) and subsystem B (red) for the various distances d ¼ 0, 1, 2.
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FIG. 2. Entanglement spectra measured on the IBM quantum computer (red) compared to the theoretical expectations. Light blue
symbols are the theoretical expectations for the respective ideal quantum state. The blue symbols include the effects of sampling noise,
present even for an ideal quantum state, ideal gates, and no readout error. Both for the simulated and for the actual measurement, each
observable was measured 1024 times. The plots show the eigenvalues of the reduced density matrix: the largest eigenvalues correspond
to the lowest levels in the entanglement spectrum. (a) Ground state of a trivial paramagnet: A unique lowest state is found in the
entanglement spectrum, reflecting the absence of any entanglement between regions A and B. (b) Eight qubit cat state: A doubly
degenerate lowest entanglement level is found reflecting the long-range correlations in this state. (c) Ground state of a topological
paramagnet: An entanglement gap separating four low-lying levels is the fingerprint of this topologically nontrivial state. The
theoretically expected perfect degeneracy is already substantially lifted by the statistical noise (blue), and in the actual experiment further
compromised by decoherence, gate errors, and readout errors. The right-hand panels are eigenvalues of reduced density matrices drawn
from the statistical distribution of them when accounting for the statistical noise associated with the measurement.
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systematic discrepancy between the exact values and the
measured values (irrespective of the states) is purely due to
decoherence from qubit and gate errors.
Summary.—We measured the entanglement spectrum, a

universal fingerprint of topological phases of matter, using
the IBM quantum computer. Although the method as
presented in this Letter is not suitable for obtaining the
entanglement spectra of large subsystems due to the
exponential scaling, the spectrum of a small subregion is
already a useful probe when the region size exceeds the
characteristic correlation length set by the gap. This is
exactly the case for the states studied in this Letter and is
more generally true for the ground states of gapped
Hamiltonians. Nevertheless, if we wish to obtain the
entanglement spectra of extensive subsystems, there are
more sophisticated schemes available to reduce the expo-
nential complexity of the problem. For example, the one
presented in Ref. [13] outlines a quantum algorithm to
obtain the p largest eigenvalues ðλ1 > … > λpÞ of the
reduced density matrix, requiring only a parallel circuit of
depthO(pðλ1=λpÞp) andOðpLÞ qubits for a system of size
L. With a small quantum computer of a few hundred qubits,
this scheme would already allow one to obtain at least part
of the entanglement spectrum of a system which cannot be
computed classically [34].
However, with the improving gate fidelities and increas-

ing number of qubits [35,36], it seems only a matter of time
before quantum simulators or quantum computers will be
able to implement more efficient algorithms and make more
precise measurements of the entanglement spectrum of
larger systems, thus providing a useful tool in under-
standing topological phases of matter. Further, since
“topological software,” for instance the surface (toric) code
[37], is envisioned as one venue to turn an analogue
quantum computer into a digital (error-corrected) quantum
computer, the characterization of quantum states in terms of
their entanglement spectrum will be indispensable.
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