
 

Charge Excitation Dynamics in Bosonic Fractional Chern Insulators

Xiao-Yu Dong,1 Adolfo G. Grushin,2,3 Johannes Motruk,2,4 and Frank Pollmann1,5
1Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany

2Department of Physics, University of California, Berkeley, California 94720, USA
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The experimental realization of the Harper-Hofstadter model in ultracold atomic gases has placed
fractional states of matter in these systems within reach—a fractional Chern insulator state (FCI) is
expected to emerge for sufficiently strong interactions when half-filling the lowest band. The experimental
setups naturally allow us to probe the dynamics of this topological state; yet little is known about its out-of-
equilibrium properties. We explore, using density matrix renormalization group simulations, the response
of the FCI state to spatially localized perturbations. After confirming the static properties of the phase we
show that the characteristic, gapless features are clearly visible in the edge dynamics. We find that a local
edge perturbation in this model propagates chirally independent of the perturbation strength. This contrasts
the behavior of single particle models with counterpropagating edge states, such as the noninteracting
Harper-Hofstadter model, where the chirality is manifest only for weak perturbations. Additionally, our
simulations show that there is inevitable density leakage from the first row of sites into the bulk, preventing
a naive chiral Luttinger theory interpretation of the dynamics.
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Introduction.—Understanding the dynamical properties
of strongly correlated quantum phases in dimensions higher
than one still remains a difficult challenge in the vast
majority of cases [1,2]. The lack of a complete paradigm
originates from the inherent complexity of simulating
the dynamics of strongly interacting quantum systems.
However, modern experiments [3–7] are now able to access
time-dependent properties and thus the need to precisely
characterize dynamical signatures of correlated phases is
becoming pressing. Among the most intriguing are scenar-
ios in which topology joins in as an additional ingredient of
the system.
A recent prominent example is the realization of the

Chern insulator phase using ultracold atoms, both in a
bosonic Harper-Hofstadter model [8–11] and the fermionic
Haldane honeycomb model [12,13]. In both cases, peri-
odically driving a lattice loaded with ultracold atoms has
been proven to show topological features [13,53], as
predicted by general theoretical arguments based on
Floquet theory [14–18]. On-site interactions in the
Harper-Hofstadter realization can drive the system into a
bosonic Floquet fractional Chern insulator (FCI) state
[19–28], the bosonic periodically driven analog of the
fractional quantum Hall (FQH) effect [29–34]. Several
protocols have been proposed to prepare this state and the
phase diagram of the Harper-Hofstadter model for hardcore
bosons has been established using various numerical
methods [31,33,35]. Although this body of knowledge

combined with proposals to detect chiral edge states
[36–38] hinted at how to identify the existence of the FCI
state in cold atomic experiments, simulations of dynamical
signatures of this phase are still lacking. However, the
observation of time-dependent quantities in this system is
possible, due to the high tunability of parameters and slow
dynamics compared to the solid state, and necessary, due to
the difficulty of probing transport quantities characterizing
these states, such as the Hall conductivity.
In this Letter we address dynamical properties of the

edge of the FCI phase of hardcore bosons at filling factor
ν ¼ 1=2 after local quenches using matrix-product state
(MPS) based simulations. We use the density matrix
renormalization group (DMRG) method together with a
recently introduced method [50] that allows for the efficient
simulation of the dynamical response function in two-
dimensional systems [51]. Our goal is to provide distinct
dynamical signatures of the FCI phase which could be
probed with current state of the art experiments. By adding
a particle at the edge we find a clear chiral propagation of
the FCI gapless edge modes, characteristic for such phases
(see Fig. 1). Moreover, this protocol provides a simple
distinction between an emergent Laughlin state and a
noninteracting Chern insulator (CI) that hosts multiple
edge modes of opposite chirality. The latter shows no
chiral asymmetry, while the chirality in the former case is
clearly visible. The reason is that a generic perturbation in
the noninteracting case mixes edge states with opposite
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chirality while the chirality in the Laughlin case is protected
by the many-body bulk state. As an experimentally relevant
example we study the ϕ ¼ π=2 Harper-Hofstadter model at
total filling 1=8 [8–11] and propose a protocol that applies a
local trap at the edge to distinguish the FCI state by varying
the trap strength.
Static properties.—We consider the Harper-Hofstadter

Hamiltonian [8,9],

H ¼ −J
X

hiji
ðeiϕija†i aj þ H:c:Þ; ð1Þ

on a square lattice with a magnetic flux of ϕ ¼ π=2 per
plaquette. Here a†i (ai) creates (annihilates) a hardcore
boson on site i. The single-particle spectrum of H has four
bands [see Fig. 1(c), inset] with the central bands touching
at four Dirac points. The model is characterized, from top to
bottom, by three Chern numbers Ci ¼ �ð1;−2; 1Þ, where
the sign is determined by the sign of ϕ. We start by
verifying that H indeed hosts a ν ¼ 1=2 Laughlin state in
agreement with previous results [29–33,39]. For this we
simulate Hamiltonian (1) on an infinite cylinder of circum-
ference Ly and total filling 1=8 with DMRG, which
enforces the half-filling of the lowest Chern band. The
results are summarized in Fig. 2 and Ref. [40], which
confirm the topological nature of the state. We find a
quantized Hall conductivity of ν ¼ 1=2, the characteri-
stic structure in the entanglement spectrum, the static

correlation function on the edge that approaches the
prediction of Luttinger liquid theory with increasing bond
dimension (χ), and a central charge of c ¼ 1 for the edge
theory through a finite entanglement scaling [47,48]
when considering an infinite strip geometry. The latter
quantity shows that the DMRG simulations on the infinite
strip reproduce the expected critical behavior at the
edge and that edge overlap is negligible for our choices
of Ly ≥ 8 [46,54].
Evolution of an added particle at the edge.—Having

established the presence of the many-body FCI state at 1=8
filling, we will now focus on the dynamical response.
The results are shown in Fig. 1 and reveal characteristic
differences between the single-particle and FCI case. We
first investigate the single-particle case and consider the
system on a strip geometry with open (periodic) boundary
conditions along y (x). A particle is created at the edge of an
empty lattice by acting on it with an a† operator and the
resulting state is then evolved in time. Figure 1(a) shows the
time evolution of the particle density on the edge which

(a) (b)

(c) (d)

FIG. 1. Time evolution of the particle density in the Harper-
Hofstadter model after a particle has been created at the edge of
an empty vacuum state with total filling ν ¼ 0 (a) and in the
interacting FCI state at ν ¼ 1=2 of the lowest band (b). The
spectral function Aðkx;ωÞ of the noninteracting case (c) reveals a
prominent overlap with gapless edges states of both chiralities.
The inset shows for comparison the density of states of the single-
particle model. In contrast, the spectral function for the FCI
(d) shows a single chiral mode.

(a)

(b)

FIG. 2. Static properties of the bosonic ν ¼ 1=2 fractional
Chern insulator. Panel (a) shows the pumping of a charge per two
flux periods as expected for a ν ¼ 1=2 FCI state. The inset shows
the entanglement spectrum of the zero charge sector. The low
lying states satisfy the expected conformal field theory (CFT)
counting f1; 1; 2; 3; 5;…g (see also Ref. [40]). All data in (a) are
calculated in an infinitely long cylinder with Ly ¼ 8. Panel
(b) shows the scaling of the entanglement entropy S as a function
of the correlation length ξχ for an infinite strip. The slope of c=6
determines the central charge of the edge theory c ¼ 1. The lower
right inset displays the real space charge density of a strip
configuration, which is infinite in the x direction and finite in the
y direction with Ly ¼ 8. The upper left inset shows the ground-

state correlation function Cx ¼ haxa†x0i on the edge versus x − x0
of an infinite strip with Ly ¼ 10. The dashed line ∝ ðx − x0Þ−2
follows the Luttinger liquid theory prediction.
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exhibits no chirality; this can be understood by the
following reasoning. The single-particle spectrum of the
model [shown in the inset of Fig. 1(c)] possesses two
dispersing midgap modes at different energies of opposite
chiralities. These connect the central band (C ¼ −2) to
the top and bottom bands (C ¼ 1) and both modes are
exponentially localized at the edge of the finite strip. When
creating a single particle at one edge, the state has overlap
with both edge modes since both have support on the edge
where the particle is created leading to the symmetric
dispersion of the particle density. To verify the above
interpretation, we compute the spectral function Aðkx;ωÞ as
the Fourier transform in space and time of the dynamical
correlation function CxðtÞ ¼ haxðtÞa†x0ðt0Þi for momentum
kx along the edge at frequency ω shown in Fig. 1(c). When
compared to the energy spectrum of H [Fig. 1(c), inset],
the spectral function highlights the fact that both midgap
chiral states have overlap with the created particle, explain-
ing the achiral behavior observed when simulating the time
evolution.
For the interacting case, we consider an infinite strip

geometry at ν ¼ 1=2 filling of the lowest band to prepare
the system in an FCI ground state jΨFCI

stripi [see lower right
inset of Fig. 2(b)]. We again create a particle at the edge to
obtain the state jΨii ¼ a†i jΨFCI

stripi. We then simulate the time
evolution of jΨii under the Hamiltonian H using a matrix-
product operator based time evolution method [40,49–51].
Unlike in the free particle case, the propagation of the
density is chiral [Fig. 1(b)] consistent with the single chiral
branch in the spectral function [Fig. 1(d)]. In the FCI state,
the emergent chirality is protected by the topology of the
many-body wave function in the bulk and thus it is more
robust than the single-particle case.
Trapping potential and dynamics.—With the insight

gained previously it is possible to devise a protocol closer
to what is experimentally realizable. In cold atomic
systems, lasers are used to control the local density of
particles, making it possible to create a local trapping
potential of varying strength of the form [55,56]

Hμ ¼ μa†i ai: ð2Þ

We again restrict i ∈ edge and compare the response of the
single-particle case and the hardcore boson ν ¼ 1=2 FCI
state as a function of μ. Our results are shown in Fig. 3
where we plot the Fourier transform of the particle density
evolution on the edge, i.e.,

R
dx

R
dte−iðkx−ωtÞa†xðtÞaxðtÞ

with x on the edge (see also Ref. [40]). For the single-
particle scenario in Figs. 3(a) and 3(c), we fill the lowest
energy state of Hamiltonian (1) with one particle in the
presence of a finite μ and then time evolve the resulting
state with a quenched Hamiltonian by abruptly switching
off the local potential. As a function of the trapping
potential, the Fourier transform shows a nonsymmetric

(symmetric) structure corresponding to a chiral (achiral)
density evolution for a shallow (deep) trap [see Figs. 3(a)
and 3(c)]. This difference originates from the fact that for a
given μ, the evolving state can only explore a subset of the
band structure. If μ is smaller than the gap between the
lowest and central band, then the time evolution allows us
to explore states only within one chiral edge state and thus
exhibits chiral behavior. If μ is large compared to the total
bandwidth, the initial state has overlap with the entire
spectrum after switching off the potential. As discussed
previously for Fig. 1(c), these states include two chiral
modes of opposite chirality, and thus the chiral propagation
disappears [Fig. 3(c)].
For the interacting case, we find the ground state for

finite μ on an infinite strip at total filling 1=8 with an extra
particle using DMRG and, subsequently, let the state evolve
under the quenched (μ ¼ 0) Hamiltonian. The ν ¼ 1=2 FCI
state is a topologically ordered many-body state, and thus
the single-particle band structure arguments do not apply.
The evolution stays chiral for arbitrary trapping potential
strength, as we observe in Figs. 3(b) and 3(d). In this case,
the many-body state dictates the excitations at the edge
which prove to be chiral in one direction. Taken together,
the chiral evolution and the insensitivity to the trapping
potential can be probed as an experimental signature of the
ν ¼ 1=2 FCI state in this model, and is therefore one of the
main results of this Letter.
In order to quantify the dependence of the chirality on

the value of μ, we define the imbalance I ¼ NR − NL of
the total particle number on the edge to the left and right of
site i during the time evolution in Figs. 4(a) and 4(b). The
single-particle case is shown in Fig. 4(a) and the imbalance
decreases with increasing the absolute value of μ consistent
with the explanation above. For a very deep trap, the

(a) (b)

(c) (d)

FIG. 3. Fourier transformation of the particle density evolution
for a shallow (μ ¼ −2 J) and a deep trap (μ ¼ −100 J) localized
at an edge site of the single-particle (a),(c) and FCI case (b),(d).
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difference is almost zero, which denotes achiral behavior as
expected. In contrast, the chiral behavior of the interacting
topologically ordered state persists even for a very deep
trap as shown in Fig. 4(b).
Towards a chiral Luttinger liquid description.—It is

tempting to connect our previous analysis with the chiral
Luttinger liquid of quantum Hall edge states [52]. For a
Laughlin state at a filling ν ¼ 1=m, this description predicts
that the spectral function and the density of states behave
as [40,52]

Aðk;ωÞ∝ ðωþvkÞm−1δðω−vkÞ; NðωÞ∝ωm−1; ð3Þ

where v is the velocity of the edge state. A direct
measurement of Aðk;ωÞ or NðωÞ ¼ R

k dkAðk;ωÞ could
be used to extractm, which would be solid evidence for the
presence of the FCI state in experiment. Such analytical
spectral function could be, in principle, compared directly
to our numerical spectral function in Fig. 1(d). However,
this exercise reveals two potential problems that experi-
ments may face to extract m. First, the main differences
between a trivial edge state and a chiral Luttinger liquid will
be most drastic at longer times, or smaller ω. This region is,
however, the most elusive numerically, due to entanglement
growth, and experimentally, due to heating and particle
loss. Second, particles created at the edge have a finite
overlap with bulk states as the correlation length is finite
[40]. Consequently, the particle will diffuse into the bulk at

longer times, making it difficult to resolve the low-energy
(long time) behavior of the edge. We have numerically
observed that a sizable part of the edge density is lost into
the bulk. Our results are shown in Figs. 4(c) and 4(d) where
we plot the average density per row for the free and
interacting cases respectively when a particle is added at the
edge (row y ¼ 0). In both cases, we find that there is a
leakage of density to the bulk, and the physical edge (i.e.,
the first row of sites) does not behave as an isolated liquid.
In the single-particle case of Fig. 4(c), the particle density
stabilizes after an initial drop, features that may be
explained by the high overlap of the initial state with the
exponentially localized edge eigenstates of the spectrum.
The interacting case in Fig. 4(d) suffers from a more severe
particle loss to the bulk of the system. We have attempted
several protocols to decrease such a leakage. First, by
increasing the width of the strip Ly ¼ 4, 8, 12 we find no
appreciable change in the density loss. This is consistent
with the fact that for any finite width, the interactions
between the two edge states are marginal for ν ¼ 1=2 [52].
Second, we have tried to confine the chiral edge modes with
an additional negative chemical potential localized at the
edge. We observed that although it reduces the leakage at
long times, sufficient density is lost at short times to prevent
a comparison with Eq. (3). Third, we find that the leakage
is reduced by choosing Jy=Jx < 1. By studying the static
properties as a function of Jy, we have checked that the
FCI phase with ν ¼ 1=2 is stable up to strong anisotropies
[31,34]. The smaller leakage as Jy decreases indicates that
the correlation between the edge state and the bulk states in
the y direction is the main source for particle loss.
Conclusions.—In this Letter, we have studied the

dynamical properties of a bosonic fractional Chern insu-
lator edge under local perturbations using the infinite
density matrix renormalization group. We have dynami-
cally established the chirality of the ν ¼ 1=2 bosonic FCI
state emergent in the Harper-Hofstadter model at 1=8 total
filling, a relevant example for current cold atom experi-
ments. We found that in the fractional Chern insulating
phase a generic edge perturbation in this model propagates
chirally, while the chirality in the single-particle case is
only visible for weak perturbations, up to the order of the
gap between the lowest and central band. This distinction
can be carried over to Chern insulating models which host
chiral edge modes with opposite chirality coexisting at a
given edge, a common instance for multiband models, such
as the Harper-Hofstader model. In contrast, two band Chern
insulator models, such as the Haldane model [12] realized
experimentally [13] fall outside this category, and our
approach is, in principle, not sufficient to distinguish the
CI from the FCI state. However, in these models, if μ is
larger than the single particle band gap, bulk excitations
will be created, which will introduce larger noise to the
chiral signal [57] than in their FCI counterparts, where the
gap is set by the strong interaction energy scale. Our

(a) (b)

(c) (d)

FIG. 4. The time evolution of the imbalance I ¼ NR − NL
between the total particle density on the right and left part of site i
for the single-particle (a) and FCI (b) case for different values of
the perturbation μ in units of the hopping J. For single particle
(FCI) case the imbalance decreases (saturates) with increasing
perturbation strength. Panels (c) and (d) show the total density per
row as a function of time for the single-particle and the interacting
scenario, respectively, for μ ¼ −100 J, showing a sizable leakage
of particle density into the bulk. The legend indicates the row
number in the y direction in the geometry of the inset of Fig. 2(b).
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simulations show that a particle created at the physical edge
(i.e., first row of sites) has a finite overlap with bulk states
and thus there is inevitable a density leakage, preventing a
naive chiral Luttinger theory interpretation of the dynamics
on the time scales considered.
Recently, a related example of the interplay between

interactions and topology causing chiral dynamics was
experimentally observed on a ladder system underlining the
relevance of our results to ongoing experiments [7]. This
experiment employed a boxlike confining potential that
brings in line with our numerical simulations and which
circumvents the effects of harmonic confinement [58,59].
A different realistic alternative is the engineering of sharp
interfaces [60].
Our work highlights that in realistic experimental setups

a richer dynamical behavior beyond a naive 1D Luttinger
liquid behavior should be expected in fractional Chern
insulators. It is triggered by an unforeseen density leakage
from the first row of sites and the insensibility to the energy
scales set by a perturbation localized to the edge, emphasiz-
ing the need for further studies of dynamics of fractional
Chern insulators.
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