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We study the dynamics and unbinding transition of vortices in the compact anisotropic Kardar-Parisi-
Zhang equation. The combination of nonequilibrium conditions and strong spatial anisotropy drastically
affects the structure of vortices and amplifies their mutual binding forces, thus stabilizing the ordered phase.
We find novel universal critical behavior in the vortex-unbinding crossover in finite-size systems. These
results are relevant for a wide variety of physical systems, ranging from strongly coupled light-matter
quantum systems to dissipative time crystals.
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Introduction.—The celebrated theory of Kosterlitz and
Thouless (KT) highlights the crucial role played by topo-
logical defects in the phase transition of U(1)-symmetric
and short-range interacting two-dimensional (2D) systems
in thermal equilibrium. At low temperatures, topological
defects (vortices) of opposite charge form tightly bound
pairs, while they are free to roam and destroy order at high
temperatures. For the stability of the ordered phase, it is
crucial that vortices interact like charged particles, i.e.,with a
Coulomb force decaying as ∼1=r. In particular, faster decay
at large distances would destabilize the ordered phase.
Interestingly, such a qualitative change of the vortex

interaction is induced by driving the system out of thermal
equilibrium. This has been studied extensively in the context
of the complex Ginzburg-Landau equation (CGLE) [1],
which reduces to the compact KPZ (cKPZ) equation [2,3] in
the long-wavelength limit [4,5]. The extent to which these
equations violate equilibrium conditions is quantified by a
single parameter that determines the strength of the non-
linearity in the cKPZ equation [6–10]. Because of this
nonlinearity, the vortex interaction is exponentially screened
at large distances—thus, the ordered phase ceases to exist.
This finding is particularly relevant, since the cKPZequation
is the long-wavelength description of a vast variety of
systems, ranging from “polar active smectics” [11] to
driven-dissipative condensates such as exciton polaritons
[3,8–10,12–19], synchronization in oscillator arrays [20],
and limit-cycle phases that emerge from a Hopf bifurcation
[21–25]—such phases have attracted a lot of attention
recently and could be coined dissipative time crystals [26].
In this Letter, we report that breaking rotational sym-

metry has an equally strong impact on the form of the
vortex interaction and acts to stabilize the ordered phase.
This is highly significant for the systems mentioned above,
in which spatial anisotropy is either intrinsic or can be
imposed deliberately. The change in the vortex interaction

can be understood intuitively by considering the mere
structure of a single vortex shown in Fig. 1. In the isotropic
cKPZ equation, vortices are “radiative”; i.e., they emit
waves radially away from the core, giving them a spiral

FIG. 1. Single vortices in the caKPZ equation. (a) WA regime
with αx ¼ λx=ð2DÞ ≈ 0.9 and αy ¼ λy=ð2DÞ ≈ 0.4 in Eq. (2). The
vortex has a squeezed spiral structure with a clearly visible radially
emitted wave. (b) SA, αx ≈ 0.9, αy ≈ −0.4. The spiral structure is
pronounced only at short distances from the vortex core. (c) In the
FA case, with αx ¼ −αy ≈ 0.7, there is no radial wave.We note that
(a)–(c) are equally nonlinear in the sense that α2x þ α2y ¼ 1.
(d) Radial dependence of the vortex field θðr;ϕÞ along the dashed
line in (a)–(c). θðr; π=4Þ grows linearly in the WA regime (a),
logarithmically in the SA regime (b) (note the logarithmic r axis),
and is constant at theFApoint. Thedashed lines are linear fitswhich
agree well with the data up to finite-size effects at large distances.
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structure [Fig. 1(a)]. Perturbations, e.g., due to the presence
of another vortex, decay exponentially in the upstream
direction of traveling waves—heuristically, this explains
why the interaction between vortices is exponentially
screened [2]. As we show below, the radially emitted wave
decays away from the vortex core for sufficiently strong
anisotropy [Fig. 1(b)] and is completely absent in a fully
anisotropic configuration [Fig. 1(c)]. Then, vortices in the
anisotropic cKPZ (caKPZ) are similar to those in equilib-
rium systems. We expect their interactions to be long range
and, therefore, order to be stable, as also indicated by
numerical simulations [4,5].
However, in a nonlinear theory such as the caKPZ

equation, single-vortex solutions cannot be superposed to
yield multivortex solutions. We present an analytical
calculation of the interaction between defects, based on
a recently developed mapping to a dual electrodynamics
problem [3,15] and treating the nonlinearity perturbatively.
This calculation is valid up to an exponentially large
characteristic scale, below which the attraction between
oppositely charged vortices is even enhanced as compared
to the linear (i.e., thermal equilibrium) isotropic case. For
this enhancement to occur, the combination of nonlinearity
and anisotropy is essential: As explained above, the non-
linearity alone entails a repulsive correction to the inter-
action, while anisotropy in a linear theory does not affect
the interaction qualitatively.
Based on the modified vortex interaction, we derive

renormalization group (RG) equations describing the
vortex-unbinding crossover in systems that are fully aniso-
tropic and smaller than the characteristic scale. Since this
scale is parametrically large, we expect that the universal
critical behavior we find will be observed in experiments
and numerical investigations of the caKPZ equation. In
particular, the divergence of the correlation length is in
between the essential singularity characteristic of the KT
transition and true scaling behavior as in usual continuous
phase transitions.
Previous studies of the caKPZ equation [8,9,11,18]

assumed that vortices do not proliferate on the character-
istic scale of the RG flow of the noncompact equation
[11,27] and can hence be included a posteriori in an
emergent equilibrium description. This assumption, how-
ever, breaks down close to the unbinding transition, where
vortices are the dominant fluctuations. To access this
region, we focus on the combined impact of nonlinearity
and strong anisotropy on the vortex dynamics.
Model.—The caKPZ equation reads

∂tθ ¼
X
i¼x;y

�
Di∂2

i θ þ
λi
2
ð∂iθÞ2

�
þ η; ð1Þ

where η is Gaussian noise with zero mean and correlations
hηðr;tÞηðr0;t0Þi¼2Δδðr−r0Þδðt−t0Þ. θ is a compact varia-
ble, i.e., one that admits topological defects. In physical

realizations, θ may be the phase field in driven
open condensates [3,8–10,12–18], in limit-cycle phases
[21–25], or in oscillator arrays. In the latter case, Eq. (1)
emerges as the continuum limit of the noisy Kuramoto-
Sakaguchi model [20,28,29] with anisotropic couplings
between the oscillators. θ may also represent the displace-
ment field in polar active smectics [11].
For stability, we require Dx;y > 0, while λx;y are unre-

stricted; in the following, we set Dx ¼ Dy ¼ D, which can
always be achieved by an anisotropic rescaling of the units of
length. For λx ¼ λy ¼ 0, Eq. (1) reduces to the (continuum
limit of the) XY model with dissipative dynamics [30]. We
denote λx;y having the same and opposite signs as weakly
anisotropic (WA) and strongly anisotropic (SA) regimes,
respectively. In particular, we denote the configuration with
λx ¼ −λy as fully anisotropic (FA). We shall restrict our-
selves to small values of jλx;yj in order to avoid a dynamical
instability of Eq. (1) [16,20]. In systems described by Eq. (1)
with λx ¼ λy, the ordered phase is always destroyed in
the thermodynamic limit by the proliferation of vortices
[2,3,31]. Here, we investigate whether order can be stable
if λx ≠ λy.
Structure of a single vortex.—A vortex is a solution of

Eq. (1) without noise that is stationary up to uniform
oscillations with a frequency ω0,

∂tθ ¼ D∇2θ þ λx
2
ð∂xθÞ2 þ

λy
2
ð∂yθÞ2 − ω0 ¼ 0; ð2Þ

and obeys
H
dl · ∇θ ¼ 2π for any integration path that

surrounds the vortex core. We solve Eq. (2) numerically by
discretizing it on a lattice (see the Supplemental Material
[32] for details). In addition, we determine analytically the
asymptotic behavior of θðr;ϕÞ for r → ∞ at fixed polar
angle ϕ, which takes the form

θðr;ϕÞ ¼ k0ðϕÞrþ bðϕÞ lnðr=aÞ þΦðϕÞ þOð1=rÞ; ð3Þ

where k0ðϕÞ is the (anisotropic) asymptotic wave number,
bðϕÞ the coefficient of the first subleading correction,
and ΦðϕÞ contains the topological part of the vortex field.
a is a microscopic cutoff scale such as the lattice spacing
in oscillator arrays or the healing length in driven open
condensates. As illustrated in Figs. 1(a) and 1(d), in the WA
regime, we find a squeezed spiral structure with [32]

k0ðϕÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0

λx cosðϕÞ2 þ λy sinðϕÞ2
s

; ð4Þ

where ω0 is determined by the regularization at short
distances [2]. In the SA regime shown in Figs. 1(b)
and 1(d), when one of λx;y is negative, Eq. (4) implies
k0ðϕÞ ¼ ω0 ¼ 0. The leading asymptotic behavior is
then given by the logarithmic term in Eq. (3) with
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bðϕÞ ¼ b0 ¼ const. Finally, for FA parameters λx ¼ −λy,
also the coefficient b0 vanishes. Indeed, then the exact
solution takes the form θðr;ϕÞ ¼ Φ0ðϕÞ [32], and the
absence of any radial dependence is evident in Figs. 1(c)
and 1(d). For λx ¼ −λy → 0, this solution smoothly
deforms into an “ordinary” XY vortex with Φ0ðϕÞ ¼ ϕ,
which is in stark contrast to the isotropic case, where the
transition from the linear to the nonlinear problem is highly
nonanalytic. Since turning on the nonlinearity in a fully
anisotropic system does not alter the radial dependence
of the far field of a single vortex, we conclude that the
interaction of vortices at large distances is not screened as
in the isotropic case, and thus the ordered phase is indeed
stable in the thermodynamic limit. It is an interesting open
question how the logarithmic dependence of the vortex
field (3) in the SA regime affects the interaction at
asymptotic distances.
Electrodynamic duality and vortex interaction.—The

vortex interaction can be calculated explicitly within a
dual electrodynamic formalism [3,15]. This calculation
treats the nonlinearity in Eq. (1) perturbatively and is
valid up to a finite but exponentially large scale we
determine below. The duality defines the electric field as
E ¼ −ẑ ×∇θ. For the overdamped dynamics described by
Eq. (1), fluctuations of the magnetic field are gapped and
can be integrated out. The basic equations are then Gauss’
law ∇ · E ¼ 2πn=ε and

ε∂tE ¼ −D∇ × ð∇ ×EÞ − 2πj − ẑ ×∇
�X

i¼x;y

λi
2
E2
i þ η

�
:

ð5Þ
Thedielectric constant ε accounts for screeningof the electric
field due to fluctuations consisting of bound vortex pairs. It
takes the microscopic value ε ¼ 1 and is renormalized upon
coarse graining as described below. n and j are the vortex
density and current, respectively, which obey the continuity
equation ∂tn ¼ −∇ · j. Forn ¼ j ¼ 0, Eq. (5) reduces to the
noncompact anisotropic KPZ equation. The vortex density is
controlled by the fugacity y. Close to the putative unbinding
transition y ≪ 1, and we restrict ourselves to consider a
dipole nðrÞ ¼ P

σ¼�σδðr − rσÞ, where σ ¼ � are the
charges of the vortices. They are assumed to undergo
diffusive motion [31,36,37] according to

drσ
dt

¼ μσEðrσÞ þ ξσ; ð6Þ

and the correlations of the zero-meanGaussian noise sources
ξσ are given by hξσ;iðtÞξσ0;jðt0Þi ¼ 2μTδσσ0δijδðt − t0Þ, where
the vortex “temperature” T is related to the noise strength Δ
in Eq. (1) [3]. The vortex mobility μ is introduced phenom-
enologically, and we consider the limit of low mobility
μ ≪ D. Then, retardation effects due to the vortices’motion
are negligible, and EðrσÞ in Eq. (6) can be approximated by

the instantaneous electrostatic field, which is determined by
Eq. (5) with ∂tE ¼ j ¼ η ¼ 0 [3]. Details of this calculation
are given in theSupplementalMaterial [32], and hereweonly
point out key features of the solution. To address the
possibility of a bound state, we focus on the dynamics of
the dipole moment r ¼ P

σ¼�σrσ ¼ rþ − r−. In the linear
(thermal equilibrium) theory, r is subject to the Coloumb
force ∼r=r2. We parametrize the nonlinearity as
α� ¼ ðλx � λyÞ=ð2DÞ, withα− ¼ 0 andαþ ¼ 0 correspond-
ing to isotropic and fully anisotropic systems, respectively.
The Coloumb force receives corrections at second order
in α�. The “isotropic” second-order correction ∝α2þ was
obtained previously [3]. It is a central, conservative, and,
crucially, repulsive force. In the “anisotropic” second-order
correction ∝ α2−, the leading contribution is also central and
conservative, but attractive. Additionally, it features sub-
leading terms that cannot be derived from a potential. The
“mixed” correction ∝αþα− includes terms ∝ðx;−yÞ that
favor alignment of the dipole along one of the principal axes,
in line with numerical simulations of the anisotropic
CGLE [38,39].
The isotropic, anisotropic, and mixed corrections are

power series in logarithms lnðr=aÞ. Thus, perturbation
theory breaks down at a scale Lv ∼ ae1=αmax where αmax ¼
maxfjα�jg. In weakly out-of-equilibrium (and thus weakly
nonlinear) systems, the scale Lv can easily be much larger
than any experimentally relevant system size. Then, we
expect the dynamics of vortices to be described by the
perturbatively obtained interaction. In the following, we
discuss how the usual KT theory is modified due to
nonequilibrium conditions and anisotropy. We focus on
the FA configuration, where anisotropy has the most
profound impact. Moreover, and as discussed in detail in the
Supplemental Material [32], a vast simplification occurs in
the FA case on scales r ≪ LT ¼ aeðT=αmaxÞ1=3 : Then, fluctu-
ations of the orientation of the dipole lead to an angular
averaging, rendering the problem effectively isotropic.
Strong anisotropy is nevertheless manifest in the result of
the angular average.
Vortex unbinding crossover.—The noise in Eqs. (5) and

(6) creates pairs of vortices and antivortices which then
diffuse under the influence of their interaction and even-
tually recombine. Such fluctuations on short scales between
the microscopic cutoff a and a running cutoff scale ael

renormalize the parameters that enter an effective descrip-
tion on larger scales. This is described by the following RG
flow equations [32]:

dε
dl

¼ 2π2y2

T
;

dy
dl

¼ 1

2

�
4 −

1

εT
þ cα2−

3ε2

�
y;

dT
dl

¼ cα2−T
3ε2

;
dc
dl

¼ −3; ð7Þ

where c is the running coefficient of the term ∝ lnðr=aÞ2 in
the effective dipole distribution with microscopic value
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c ¼ 3=2 (see the Supplemental Material [32]; recall that
also the microscopic value ε ¼ 1 is fixed). Integrating the
flow equation for c yields c ¼ 3ð1 − 2lÞ=2; i.e., the
logarithmic scale l appears explicitly in the flow equations
for the remaining couplings. This again necessarily invalid-
ates the perturbative flow equations at large scales—
however, the condition r ≪ Lv, which we assumed in
the derivation of the flow equations, is always more
stringent. Note also that the characteristic KPZ scale on
which the renormalization of the (suitably rescaled) non-
linearity in Eq. (1) due to nontopological fluctuations
becomes substantial, is generically much larger than Lv,
LT [3]. Hence, analyzing Eq. (7) we can consider α− as a
fixed parameter.
The RG flow is shown in Fig. 2. Remarkably, it is

qualitatively different from both the equilibrium KT flow
and the RG flow in an isotropic nonequilibrium system.
The most striking feature is the existence of a low-
temperature phase in which vortices remain bound and
fluctuations are anomalously suppressed since both y,
T → 0. In contrast, in isotropic systems vortices unbind
at any finite temperature [3]; the low-temperature ordered
phase in thermal equilibrium, on the other hand, is different
in that T is conserved by the RG flow. The strong
suppression of vortex fluctuations can be traced back to
the dominant correction to the vortex interaction being
attractive in the FA case. Consequently, the fundamental
difference to the flow equations for isotropic systems in
Ref. [3] is that here c flows to negative values, and therefore
the terms ∝ c in the equations for T and y renormalize these
quantities to lower values, thus antagonizing the unbinding
of vortices. This leads to increased stability of the ordered
phase as compared to the equilibrium case: The critical

temperature Tc is higher for the same value of y.
Heuristically, the lower the probability for vortex pairs
to be created at a microscopic scale, the stronger noise-
induced fluctuations the system can afford and still remain
ordered. This is true also in equilibrium, but here we found
that for y → 0 the critical temperature diverges whereas it
remains finite in KT theory.
While at low temperatures the flow T → 0 is presumably

cut at large scales when the flow equations (7) become
invalid, at high temperatures the rapid growth of ε, indicating
the screening of vortex interactions, stops the flow of T.
Then, at larger scales, the flow in the disordered phase is the
same as in equilibrium [32] (in particular, y, ε → ∞).
The existence of two distinct phases points to the

existence of a fixed point that controls critical behavior
at the transition. Even if the “true” critical behavior at the
largest scales is not captured by the flow equations (7), they
still entail the finite-size criticality that is observable up to
parametrically large scales. However, in contrast to usual
continuous phase transitions, the flow equations (7) cannot
have a true fixed point since c grows steadily. A “flowing
fixed point” can be found by the change of variables
ε̃ ¼ ε=x, ỹ ¼ ffiffiffi

x
p

y, and T̃ ¼ xT, where x ¼ −c (note that
c < 0 in the regime of interest at large l), which recasts the
flow equations as

dε̃
dx

¼ 1

x

�
2π2ỹ2

3T̃
− ε̃

�
;

dT̃
dx

¼ 1

3x

�
3 −

α2−
3ε̃2

�
T̃;

dỹ
dx

¼ 1

6

�
4 −

1

ε̃ T̃
þ 1

x

�
3 −

α2−
3ε̃2

��
ỹ: ð8Þ

These equations have a fixed point at ε̃� ¼ jα−j=3,
ỹ� ¼

ffiffiffiffiffiffiffiffi
3=8

p ð1=πÞ, T̃� ¼ 3=ð4jα−jÞ. The existence of this
fixed point implies that the correlation length diverges at
the transition: As T is tuned closer to its critical value, the
RG flow stays close to the fixed point up to larger scales
before it eventually runs off to the ordered or disordered
phase. In the disordered high-temperature phase, the
correlation length is given by the scale at which the flow
trajectory departing from the vicinity of the fixed point
reaches y ¼ 1. It can be calculated from an asymptotic
analysis of the linearized flow equations, which yields [32]

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðξ=aÞ

p
þ ln½lnðξ=aÞ�=4 ∼ − lnðtÞ; ð9Þ

where t ¼ ðT − TcÞ=Tc is the reduced temperature. This
peculiar universal divergence of ξ is stronger than conven-
tional scaling ξ=a ∼ t−ν but weaker than the essential
singularity ξ=a ∼ eC=

ffiffi
t

p
at the equilibrium KT transition.

Experimentally or numerically, it will be challenging to
confirm the precise type of singularity (9)—especially,
since the asymptotic seems to be approached only for T
very close to Tc when ξ becomes extremely large [32].
A more easily accessible feature that distinguishes the

FIG. 2. RG flow (7).Dashed blue:KT flow forα2− ¼ 0; solid red:
α2− ¼ 0.01. There are two phases with y, εT → 0 (εT → const for
α2− ¼ 0) and y, εT → ∞, respectively. For α2− ¼ 0.01, the critical
temperature is Tc ≈ 0.13, which is slightly larger than the KT
critical temperature. The microscopic value of the fugacity is
chosen as y ¼ 0.1, and the temperature is varied in the range
T ¼ 0.1;…; 0.145.
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transition is the absence of the characteristic jump of the
superfluid stiffness ∼1=ε with the universal value
1=ðεTÞ → 4 for T approaching Tc from below in the KT
transition. Here, in contrast, the renormalized value of ε
diverges at Tc, leading to a smoothly vanishing superfluid
stiffness at the transition.
Conclusions.—We showed that strong spatial anisotropy

stabilizes the bound phase of vortices in 2D driven open
systems and gives rise to novel critical behavior. Recent
progress in stabilizing condensates of exciton polaritons
[40] (in which strong anisotropy is achievable [18]) paves
the way towards testing our predictions experimentally.
Moreover, the modification of the vortex interaction is
readily amenable to numerical investigations [41] and
should have directly observable effects on phase-ordering
kinetics [42–45]. It remains to be seen whether strong
anisotropy can also have a healing effect on the dynamical
instability reported in Refs. [16,20].
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