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At low energy, the dynamics of excitations of many physical systems are locally constrained. Examples
include frustrated antiferromagnets, fractional quantum Hall fluids, and Rydberg atoms in the blockaded
regime. Can such locally constrained systems be fully many-body localized? In this Letter, we answer this
question affirmatively and elucidate the structure of the accompanying quasilocal integrals of motion. By
studying disordered spin chains subject to a projection constraint in the z direction, we show that full many-
body localization (MBL) is stable at strong z-field disorder and identify a new mechanism of localization
through resonance at strong transverse disorder. However, MBL is not guaranteed; the constraints can
“frustrate” the tendency of the spins to align with the transverse fields and lead to full thermalization or
criticality. We further provide evidence that the transition is discontinuous in local observables with large
sample-to-sample variations. Our dynamical phase diagram is accessible in current Rydberg atomic
experiments which realize programmable constrained Ising Hamiltonians.
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At low energy, the dynamics of many physical systems
are restricted to Hilbert spaces with local constraints. For
example, the canonical spin-ice compound Dy2Ti2O7 has
Ising-like magnetic moments that obey a local ice rule at
low temperature [1,2]. Electronic systems such as fractional
quantum Hall liquids and p-wave superconductors [3–10]
are believed to host quasiparticles with non-Abelian sta-
tistics, which produce a topologically degenerate manifold
of states within which the low energy dynamics are
constrained. Finally, Rydberg excitations of cold atomic
chains [11,12] are energetically forbidden to occupy
adjacent sites in the blockaded regime.
Little is known about the dynamical phases of locally

constrained systems in isolation [13–16]. Although their
Hilbert space lacks a tensor product structure, there is a
notion of locality because the influence of local measure-
ments decays exponentially in space [13]. This suggests
that constraints pose no impediment to local thermalization,
as was numerically verified in pinned non-Abelian anyon
chains [13] and in dimer models [14]. But what of the
effects of spatial disorder? In unconstrained systems,
quenched disorder can localize quantum particles and
prevent the transport necessary for equilibration in isolation
[17], a phenomenon known as many-body localization
(MBL) [18–60]. In this Letter, we show that constraints
pose no impediment to localization and present a model
exhibiting new constraint-driven MBL and thermal phases
(Fig. 1).
Local constraints have two opposing effects on poten-

tially MBL systems. The constraints disallow certain
intermediate states, blocking perturbative relaxation chan-
nels and yielding more robust localization. This is the case

for the “diagonal MBL” phase in Fig. 1. However, when the
constraints are transverse to the disorder, they may frustrate
localization by forbidding extremal eigenstates of the
disorder potential, effectively decreasing the energy detun-
ing between adjacent spins. This effect partly underlies
the robust energy transport in strongly disordered pinned
non-Abelian anyon chains [16,61–67], and leads to the
“constrained thermal” phase in Fig. 1. Surprisingly,
such frustration does not preclude localization—in the

FIG. 1. Infinite temperature dynamical phase diagram of the
constrained Ising model in Eq. (1) in which adjacent spins are
forbidden to both point along −z (inset). The mean level spacing
ratio [r] distinguishes the localized region with Poisson level
statistics (blue, ½r� ≈ 0.39) from the thermalizing region with
random matrix level statistics (red, ½r� ≈ 0.53). At large Wz=Wx,
the localization transition approaches the dashed line (see text),
while at small Wz=Wx, the transition line intersects the x axis at
gx=Wx ≈ 1 (black dot).
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“constrained MBL” phase, the spins in regions with weak
potential are pinned such that nearby spins may resonate
and become approximate eigenstates of the transverse
disorder potential without violating the constraints. Thus,
localization is favored by a mechanism reminiscent of
“order-by-disorder” in frustrated spin systems [68].
Concretely, we study an open Ising chain of N spins

whose Hilbert space H̃N satisfies the constraint that
neighboring spins cannot simultaneously point along −z
(see Fig. 1, inset). This Hilbert space describes quantum
dimer ladders [69], pinned Fibonacci anyon chains [13,75],
and Rydberg blockaded chains [76]. The dimension of H̃N
is given by FNþ2, where FN is the Nth Fibonacci number.
As FN ∼ ϕN with ϕ≡ ð ffiffiffi

5
p þ 1Þ=2 the golden mean for

large N, the quantum dimension is irrational. The
Hamiltonian of the system is

H ¼
XN
i¼1

ðgiX̃i þ hiZ̃iÞ ð1Þ

where gi and hi are independently drawn on each site from
box distributions gx þ ½−Wx;Wx� and ½−Wz;Wz�, respec-
tively, and X̃i ¼ Pσxi P, Z̃i ¼ PσziP are the projected Pauli
operators σx;zi on site i. The projection operator P annihi-
lates any z configuration with the ↓↓ motif,

P ¼
Y
i

ð3þ σzi þ σziþ1 − σziσ
z
iþ1Þ

4
; ð2Þ

so that X̃i can flip spin i only if Z̃i−1 ¼ Z̃iþ1 ¼ 1. Without
constraints, each spin independently precesses around its
local field and there is neither transport of energy, nor local
equilibration. The constraints force neighboring spins to
interact as ½X̃i; X̃iþ1� ≠ 0, producing the rich dynamical
phase diagram in Fig. 1.
The diagonal MBL phase.—The restriction to H̃N is trivial

when H is diagonal in the z basis (gi ≡ 0). This diagonal
limit is localized; every eigenstate jEi is uniquely labeled by
the string of its �1 eigenvalues under the operators, Z̃i for
i ¼ 1;…; N. The strings satisfy the constraint

jEi ¼ jfZ̃igi; Z̃i and Z̃iþ1 ≠ −1: ð3Þ

The local conserved operators Z̃i define l-bits, which unlike
their unconstrained counterparts, satisfy a restricted algebra
wherein Z̃iZ̃iþ1 ¼ Z̃i þ Z̃iþ1 − 1. This implies that the
subset of all possible tensor product operators which do
not contain both Z̃i and Z̃iþ1 for any i form a basis for the
FNþ2 conserved operators [69].
Imbrie [50,77] rigorously showed that the closely related

unconstrained model

HIM ¼
XN
i¼1

giσxi þ hiσ
z
i þ Jiσ

z
iσ

z
iþ1 ð4Þ

can be diagonalized using a sequence of quasilocal unitary
operators U. Since terms containing r spins appear in the
generator of U with an amplitude that is (with high
probability) exponentially small in r, the l-bits at gi ¼ 0

extend to quasilocal l-bits at small gi: τ
z
i ≡UσziU

†. These
l-bits underlie the integrability, the dephasing dynamics,
and the low eigenstate entanglement of the fully MBL
phase [26,30,48–54].
The above arguments can be adapted to argue for full

MBL in our model when gx,Wx ≪ Wz (upper-left corner of
Fig. 1). Specifically, as (i) the constraints do not affect the
level statistics of the spectrum of the diagonal limit at gi ¼ 0,
and (ii) certain terms only appear in the rotated Hamiltonian
at higher order in perturbation theory as compared to the
unconstrained case, we can perturbatively construct a
quasilocal unitary U which diagonalizes Eq. (1) with high
probability and defines l-bits: τ̃zi ¼ UZ̃iU† with the same
properties as Eq. (3) in the diagonal limit. U also defines the
quasilocal operator τ̃xi that flips the z eigenvalue of the l-bit i:
τ̃xi ¼ UX̃iU†. As in the diagonal limit, ½τ̃xi ; τ̃xi�1� ≠ 0.
We support these claims with exact diagonalization

performed on Ns ≥ 1000 samples at N ¼ 14–18 and Ns ¼
500 samples at N ¼ 20. Within each sample, we consider
the central third of the sites and the central third of the
eigenspectrum. At large Wz, we expect that the l-bit τ̃

z
i is a

weakly dressed version of Z̃i with a finite fraction of its
operator weight on Z̃i. As hEjτ̃zi jEi ¼ �1, we expect a
bimodal distribution for hEjZ̃ijEi with weight primarily at
�1 as N → ∞. This is confirmed by Fig. 2(a). The (small)
weight between −0.5 and 0.5 comes from eigenstates in
which spins i − 1 and iþ 1 point primarily along þz, so
that spin i points along or against its local field direction.
As the local field is in the x-z plane, the z projection of spin
i is reduced [69].
The constrained thermal phase.—When the maximum x

field gx þWx is comparable to the typical z field ∼Wz, the
perturbative construction of the quasilocal unitary breaks
down and a thermal phase emerges. This suggests that the
phase boundary lies at Wz=Wx ∼ gx=Wx þ 1 for large
Wz=Wx (dashed line in Fig. 1). The constrained thermal
phase persists to smallWz=Wx for gx=Wx ≫ 1, in agreement
with the intuition that weakly disordered, strongly interact-
ing models thermalize. Indeed Fig. 2(d) confirms that the
model satisfies the eigenstate thermalization hypothesis
(ETH) [78–82] expected of thermalizing phases, in which
individual eigenstates reproduce the expectation values of
the thermal ensemble [69]. Specifically, panel (d) shows that
PðhEjZ̃ijEiÞ concentrates around the infinite temperature
value of 1=

ffiffiffi
5

p
with increasing N, in contrast to the

distribution in the MBL phase in panel (a).
The constrained MBL phase.—Strikingly, numerical

signatures of localization persist in the lower left corner
of Fig. 1 (gx, Wz ≪ Wx), when the x field dominates
the z field on most sites. As adjacent spins cannot
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simultaneously align or antialign in the x direction
(½X̃i; X̃iþ1� ≠ 0), the mechanism underlying localization
must be qualitatively different than in the diagonal MBL
phase. To expose this mechanism, consider a 3-site chain
with g1 ≠ g3 > 0, but g2 ¼ 0. There are five eigenstates:
four of them jX̃1 ¼ �1; Z̃2 ¼ 1; X̃3 ¼ �1i have energies
�g1 � g3, while the fifth jZ̃1 ¼ −1; Z̃2 ¼ 1; Z̃3 ¼ −1i has
zero energy. In other words, the x fields on sites 1 and 3
create an effective z field of order jg3 − g1j on site 2. If
jg2j ≪ jg3 − g1j, Z̃2 will be approximately conserved.
In the model in Eq. (1) with strong and weak x-field

segments of varying length, a similar mechanism can
generate effective z fields on sites with weak x fields.
The Hamiltonian on a finite strong segment satisfies the
ETH; the effective z field on an adjacent weak x-field site i
is therefore set by the level spacing of the strong segment.
When this effective z field exceeds gi (i.e., when the
segments are not too long), we expect that Z̃i ≈�1 in all
eigenstates. At Wz > 0, the bare z fields stabilize this
constrained MBL phase in two ways: (i) they add to the z
field on weak sites, and (ii) they increase the strength of
the effective z field generated by strong segments by
decreasing the length of the typical strong segments.
Once the typical z field exceeds the x field on each site,
the system smoothly crosses over into the diagonal MBL
phase. Figure 2(b) confirms this picture: the distribution
hEjZ̃ijEi shows significant weight at �1, coming from
weak x-field sites that are pinned in the z direction. The
strong segments account for the weight near the thermal
value of 1=

ffiffiffi
5

p
. The lack of concentration of measure

around the thermal value with increasing N indicates that
the length of the strong segments is finite (see the
Supplemental Material for further details [69]).
At Wz ¼ 0, atypically long strong segments may desta-

bilize the localized phase through avalanche effects [83].
Numerically, the proximity to the thermal transition also
complicates the interpretation of the data at Wz ¼ 0,
gx=Wx < 1, as we discuss below. We now show that without
such rare segments, our argument for localization can be
made rigorous. To this end, consider the strong-weak-strong
(SWS) model obtained from Eq. (1) by taking hi ¼ 0 and
repeating the 3-site x-field motif discussed above:

gi ∈
� ½−δw; δw�; if i ¼ 0 mod 3

½1 − δs; 1þ δs�; otherwise:
ð5Þ

For δw¼0, the local operators Ô3i¼g3iþ1X3iþ1þg3iþ2X3iþ2

and Z̃3i commute with one another and with H. The

eigenvalues ϵ3i¼0;�g3iþ1;�g3iþ2;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g23iþ1þg23iþ2

q
of the

Ô3i uniquely label the eigenstates, and the energies are
given by

P
3iϵ3i. Thus, this model is trivially localized with

conserved operators given by fÔ3ig.
In the Supplemental Material [69], we again adapt the

methods of Refs. [50,77] to argue that full MBL persists for
δw ≪ δs in the SWS model. Specifically, as the energy
spectrum obeys limited level attraction at δw ¼ 0, and
resonances can occur only if two nearby strong fields differ
by an amount ∼δw, there exists a quasilocal unitary that
diagonalizes H and defines a set of l-bits at small δw. This
demonstrates that fields that commute with the constraint
are not, in general, necessary for localization.
The line Wz ¼ 0.—For Wz ¼ 0, the minimum x field

given by gx −Wx controls the phase diagram. When
gx > Wx, there are no weak x fields and we expect thermal-
ization, while for gx < Wx, we expect a constrained MBL
phase up to rare region effects. In Fig. 3, we use two
measures to test this: (a) the mean level spacing ratio [r]
[22,84], and (b) the mean half-chain entanglement entropy
[S]. rðnÞ is defined as min (δðnÞ; δðnþ 1Þ)=max (δðnÞ;
δðnþ 1Þ) with δðnÞ ¼ En − En−1 when the energies Ei are
enumerated in increasing order, while S is defined as
−TrρL log2 ρL, where ρL is the reduced density matrix of
the left half of the chain in eigenstate jEi. The mean is taken
with respect to sites, states, and samples and the normali-
zation SP is the finite-size corrected entropy [85] of an
infinite temperature state [86]. The finite-size flow of [r] and
½S�=SP towards their respective thermal values of rGOE and 1,
where rGOE is the value of [r] in a Gaussian orthogonal
ensemble, confirms the thermal phase for gx > Wx.
In the constrained MBL phase, we expect ½r� → rPoi and

½S�=SP → 0 with increasing N. While [r] exhibits some
finite-size flow towards rPoi for gx < Wx in Fig. 3, there is
little flow in ½S�=SP. This is likely due to the proximity
to the (same) transition at gx ¼ 0 and gx ¼ Wx. Since

(a)

(b)

(c)

(d)

FIG. 2. Probability distribution of hEjZ̃ijEi. In the diagonal
MBL phase [panel (a)], the distribution is bimodal with maxima
near �1. In the constrained thermal phase [panel (d)], the
distribution concentrates around the infinite temperature average
of 1=

ffiffiffi
5

p
(dashed line). In the constrained MBL phase [panel (b)]

and at the transition [panel (c)], the distribution shows features of
both MBL and thermal phases.
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performing local rotations about the z axis on sites with
gi < 0 yields an equivalent model with strictly positive x
fields, gx ¼ 0 and gx ¼ Wx represent the same dynamical
transition: there is a sample at gx ¼ Wx for every sample at
gx ¼ 0 with the same eigenstate properties. Whether rare
region effects are also important will be addressed in future
work [87].
At the purported transition gx=Wx ¼ 1, the distribution of

hEjZ̃ijEi in Fig. 2(c) exhibits sharp features at four values:
�1, 0, and at the infinite temperature value of 1=

ffiffiffi
5

p
. That is,

spins either point along �z, �x, or are locally thermal in
eigenstates. The thermal peak height increases with increas-
ing N, while the other features persist, suggesting that (i) the
transition point is heterogenous with respect to local
observables, and (ii) eigenstate expectation values of local
observables jump across gx=Wx ¼ 1.
In order to determine the origin of the striking hetero-

geneity, we use different evaluations of the normalized
standard deviation ΔS=SP following Ref. [88]. Figure 4
shows three possibilities: (i) intersample Δs½S�E;c, (ii) intra-
sample across eigenstates ½ΔE½S�c�s, and (iii) intrasample
across the position of the cuts ½ΔcS�E;s, where s, E, c,
respectively, refer to sample, eigenstates, and cuts. In the
thermal phase for gx=Wx > 1, all three quantities go to zero
with increasing N, showing that S for any position of the
cut in any eigenstate in any sample is representative of the

phase. At gx=Wx ¼ 1, on the other hand, the intersample
deviation dominates and even slightly increases with N,
while the other two variations decrease with N. This
strongly suggests that the transition is like an equilibrium
first-order transition [89,90] in which all of the variation in
S comes from intersample variation in the x fields. This
scenario has been suggested by several works [88,91–93],
and our model provides the first clear microscopic obser-
vation. We note that the increase in Δs½S�E;c=SP with N
cannot indefinitely continue as the variable is bounded.
Discussion.—We have studied the fate of MBL in a

constrained disordered system, and found that constraints
can either assist or frustrate localization, depending on
whether or not they commute with the random fields. We
have also shown by explicit construction that random fields
transverse to the constraint lead to localization through a
new resonance mechanism. Finally, we have provided
strong evidence that the transition out of the thermal phase
is “first-order,” in the sense that the primary variation of the
half-chain entanglement entropy comes from intersample
variation and that local observables vary discontinuously
across the transition.
There are a number of interesting directions for further

study. Recently, Ref. [66] argued that MBL is impossible in
pinned non-Abelian anyon chains, partly due to the lack of
a tensor product Hilbert space. Since we have shown that
constraints alone do not prevent localization, this delocal-
ization must be a consequence of the SUð2Þk symmetry
respected by the anyon Hamiltonians. Constrained models
may also provide simpler realizations of the nonergodic
delocalized phase posited in the non-Abelian systems [65].
The large intersample variation in S at the numerically

accessible system sizes suggests that the numerically
extracted finite-size scaling exponents will obey the
Harris criterion [38,94], in sharp contrast to the numerical
exponents reported for unconstrained models [35,37,95].
More broadly, as the nonthermal behavior for small Wz
results from weak x fields, the constrained Ising model
provides a unique setting to isolate the effects of rare
regions. Since Eq. (1) describes Rydberg-blockaded chains,
quenches and other dynamical experiments [12] in the
presence of disorder should access these rare region effects
in energy transport and in entanglement growth.
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