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When metals plastically deform, the density of line defects called dislocations increases and the
microstructure is continuously refined, leading to the strain hardening behavior. Using discrete dislocation
dynamics simulations, we demonstrate the fundamental role of junction formation in connecting
dislocation microstructure evolution and strain hardening in face-centered cubic (fcc) Cu. The dislocation
network formed consists of line segments whose lengths closely follow an exponential distribution. This
exponential distribution is a consequence of junction formation, which can be modeled as a one-
dimensional Poisson process. According to the exponential distribution, two non-dimensional parameters
control microstructure evolution, with the hardening rate dictated by the rate of stable junction formation.
Among the types of junctions in fcc crystals, we find that glissile junctions make the dominant contribution
to strain hardening.
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The flow stress required to continuously deform a crystal
generally increases with the amount of plastic strain;
this phenomenon is called strain hardening. The strain
hardening rate is one of the most prominent features
of the stress-strain curves of materials, and it is critical
for the stability of plastic flow against local necking [1].
A quantitative understanding of the strain hardening
rate in terms of fundamental physical mechanisms has
attracted significant interest not only as a challenging
problem in nonequilibrium statistical mechanics [2–8]
but also for its importance in advanced manufacturing
processes [9] (e.g., forming and cold working) and novel
alloy design [10].
At temperatures below about one-third of the melting

point of a metal, movement of dislocations—line defects in
the crystal lattice—is the dominant mechanism for plastic
deformation. It is widely believed that under such con-
ditions, the strain hardening behavior of pure, single
crystalline metals is entirely governed by the dynamics
of dislocations, which multiply and form intricate network
structures during plastic deformation. Through extensive
theoretical and experimental research over the last five
decades [11], a great deal is now known regarding the
dislocation processes and strain hardening behaviors of
single crystals. The mobility of individual dislocations and
reactions between them are well understood through
elasticity theory [7,12–16] and atomistic simulations
[17–20]. Dislocation microstructures have been extensively
characterized using transmission electron microscopy
[21–23]. The stress-strain curves for single crystals have
also been measured under a wide range of temperatures and
loading directions [24]. However, a quantitative connection
between the key microstructural features of the dislocation

network and the strain hardening rate of a metal is still
lacking.
In principle, the missing connection can be provided by

large-scale discrete dislocation dynamics (DDD) simula-
tions, which follow the evolution of the dislocation network
and predict the stress-strain curve of the crystal. Using the
PARADIS program [25,26] and a recently developed time
integrator [27], we can now predict the stress-strain curves
of single crystal Cu along the [001] direction to a sufficient
amount of strain so that the strain hardening rate can be
obtained consistently. Our DDD simulations reveal an
important microstructural feature of the dislocation net-
work: the lengths of dislocation line segments (between
junction nodes) closely obey an exponential distribu-
tion. This exponential distribution is parametrized by the
dislocation density ρ, and a dimensionless parameter
ϕ≡ N2=ρ3, where N is total number of the dislocation
line segments per unit volume. We show that the expo-
nential length distribution is the result of a one-dimensional
Poisson process, where a dislocation line segment is
randomly subdivided into two shorter segments when a
stable junction is formed. Furthermore, junction formation
is found to be essential for dislocation multiplication and
strain hardening, because the strain hardening rate vanishes
when junction formation is disabled in DDD simulations.
Based on the exponential distribution of line lengths, a
quantitative connection is established between the junction
formation rate and the strain hardening rate, and, by
selectively disabling different junction types in DDD
simulations, we find that glissile junctions make the
dominant contribution to the strain hardening rate.
Our DDD simulation cell is a cube with a 15 μm length

subjected to periodic boundary conditions in all three
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directions. The initial condition consists of straight dis-
location lines on f111g planes with 1

2
h011i Burgers

vectors. These dislocations are randomly chosen to have
an edge, screw, or mixed (60°) character, and are confined
to glide on f111g planes (no cross-slip allowed). A linear
mobility is applied to all mobile dislocations with a drag
coefficient of B ¼ 15.6 μPa s. The elastic interactions
between dislocations are parametrized by the shear modu-
lus μ ¼ 54.6 GPa and Poisson’s ratio ν ¼ 0.324 of Cu. The
dislocation structure is first relaxed to an equilibrium state,
giving the initial density ρ0, and it is then subjected to a
constant strain rate _ε along [001]. Under this high-
symmetry loading condition, eight of the twelve slip
systems have the same resolved shear stress with a
Schmid factor S ≈ 0.41, and the remaining four have a
Schmid factor of zero.
Figure 1 shows the shear stress-strain curves predicted

by DDD simulations under two strain rates, where the shear
stress τ and strain γ are related to normal stress σ and strain
ε by τ ¼ Sσ and γ ¼ ε=S. Three independent simulations
with randomly generated initial conditions are performed
for each strain rate and initial density to insure robustness
of the results—additional results with different initial
densities are in the Supplemental Material (SM) [28].
As shown in Fig. 1, despite the fact that our strain

rates are quite high relative to quasistatic experiments, the
strain hardening rate is largely consistent with the Stage II
hardening rate of Θ≡ dτ=dγ ∼ 320� 50 MPa observed
by Takeuchi [33] in single crystalline copper, and
the commonly cited rules-of-thumb of μ=200 to μ=300

(180–270 MPa), where μ is the shear modulus, for fcc
metals in Stage II [6,21]. The consistency in the slope of the
stress-strain curves in Fig. 1 shows that the strain hardening
rate is less sensitive to the applied strain rate than the yield
stress.
The success of DDD simulations in capturing the strain

hardening rate of single crystals enables us to answer the
fundamental question: which microstructural features in the
dislocation network are responsible for the strain hardening
behavior? An obvious candidate is the total dislocation
density ρ. In fact, the well-known Taylor relation states that
the flow stress τ satisfies the following relation,

τ ¼ αμb
ffiffiffi
ρ

p
; ð1Þ

where b is the magnitude of the Burgers vector, and α is a
constant experimentally determined to be between 0.5
and 1 [5]. We find that the Taylor relation is obeyed during
hardening in our DDD simulations with α ≈ 0.5 (see
SM [28]).
The Taylor relation has often been interpreted by

considering the critical stress needed to free (or activate)
dislocations whose end points are pinned (e.g., by junc-
tions) [34], by assuming that the average segment length
scales with ρ−1=2. Figure 2(a) shows a typical dislocation
microstructure from our DDD simulations. The dislocation
line network is quite complex and the segment lengths are
clearly not all the same as is often assumed in simple
models. Given the fundamental connection between dis-
location line length and flow stress, the distribution of line
lengths should be of primary importance when character-
izing the statistical properties of dislocation networks,
although in the past it has not received much attention.
In this work, we have analyzed the length of all dislocation
lines connecting one pinning point (e.g., nodes terminating
at junctions) to another, which has been referred to as the
link length [35]. We have performed such an analysis both
on instantaneous snapshots from DDD simulations, as well
as on configurations after the snapshots are relaxed under
zero stress (similar to postmortem analysis in experiments).
Figure 2(b) shows the distribution of link lengths l

normalized by the average length l̄ from a typical relaxed
dislocation structure at γ ¼ 0.87% shear strain. The histo-
gram shows that the probability distribution of link lengths
can be well described by an exponential distribution,

pðlÞ ¼ ð1=l̄Þe−l=l̄: ð2Þ

Other researchers have found that dislocation networks
observed in molecular dynamics simulations of strained
nanopillars exhibit a similar exponential distribution [36].
For the distribution shown in Fig. 2(b), we find that for link
lengths less than 2.5l̄ (which comprises 91% of the links),
the deviation from the exponential distribution in a quan-
tile-quantile (Q-Q) plot is less than 5% (see SM [28]).

FIG. 1. Shear stress-strain curves of single crystalline Cu
deformed along [001] axis. Thick curves are predictions by
DDD simulations for an initial dislocation density ρ0 ¼ 0.7 ×
1012 m−2 at two different strain rates _ε. The thin solid line is
extracted from experimental data [33] at strain rate of
_ε ¼ 3 × 10−3 s−1. The dashed lines are translated from the thin
solid line to show the consistency of the strain hardening rate
between simulations and experiments.

PHYSICAL REVIEW LETTERS 121, 085501 (2018)

085501-2



To discuss the nature of the exponential length distribu-
tion and its consequence on strain hardening, it is useful
to introduce a length density function, nðlÞ≡ NpðlÞ,
where nðlÞdl is the number of links per unit volume whose
length is between l and lþ dl. N is the total number of
links per unit volume. N and ρ are the zeroth and first
moments of the density function nðlÞ, respectively. If we
define a nondimensional parameter ϕ≡ N2=ρ3, then the
average link length is l̄ ¼ ρ=N ¼ 1=

ffiffiffiffiffiffi
ϕρ

p
, and Eq. (2) is

equivalent to

nðlÞ ¼ ϕρ2e−
ffiffiffiffi
ϕρ

p
l: ð3Þ

Equation (3) means that the dislocation length distribution is
completely determined by the total density ρ and the
nondimensional parameter ϕ. We find that ϕ gradually
increases during the course of the simulations (see Fig. 3).
The exponential form of nðlÞ can be explained by

considering a simple model for the junction formation
process. The degrees of freedom of the model are the

lengths l of N dislocation links in a unit volume. When a
link of length l participates in a junction formation event,
we assume that this link splits into two links of lengths l1
and l2 ¼ l − l1, where l1 is uniformly distributed in ð0; lÞ. If
we assume that the probability rate for splitting a link is
proportional to its length l, then numerical simulations
show that the distribution of link lengths quickly goes to an
exponential distribution (see SM [28]). Therefore, we
attribute the origin of the link length distribution to the
observation that the probability of a link of length l
experiencing a collision is proportional to l, rendering
junction formation a one-dimensional Poisson point proc-
ess from which an exponential distribution results [37].
In other words, the probability of finding a link of length l
having not yet suffered a collision is exponentially small
(∼e−l=l̄).
In the following, we show that focusing on the dis-

location link length distribution function, nðlÞ, allows us to
reveal deeper connections between the dislocation micro-
structure and the strain hardening rate that have not been
appreciated before. We shall assume that nðlÞ (in single
crystal Cu under [001] loading) always follows the expo-
nential distribution of Eq. (3), which is parametrized by the
dislocation density ρ and a nondimensional parameter ϕ.
Furthermore, we shall assume that the dislocation micro-
structure (under [001] loading) is uniquely determined by
the two parameters ρ and ϕ. Given these assumptions, we
will be able to establish a quantitative link between the
junction formation rate and the strain hardening rate, as
shown below.
Consistent with the assumption that the probability rate

of a line splitting is proportional to its length l, we assume
that the overall collision rate between dislocations on
different slip systems is R ¼ fρ2v̄, where f is the ratio
of the forest density ρf over the total density ρ, and the

(a)

(b)

FIG. 2. (a) Snapshot from a DDD simulation at γ ¼ 0.87%
shear strain, with _ε ¼ 103 s−1 and ρ0 ¼ 0.7 × 1012 m−2. (b) Dis-
location link length distribution nðLÞ for the structure shown in
(a) (after being relaxed to zero stress) compared to Eq. (3).

FIG. 3. ϕ − β values during DDD simulations at strain rates
_ε ¼ 103 s−1 and 102 s−1. Dashed lines are guide to the eye for the
range of ϕ − β values. The * symbol indicates the critical value
ϕc, beyond which Eq. (7) becomes valid.
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mean spacing between pinning points on dislocation slip
planes is λ≡ 1=

ffiffiffiffiffiffi
fρ

p
. Our DDD simulations show that f ≈

0.45 and remains a constant with strain (see SM [28]). The
difference between ϕ (increasing with strain) and f (con-
stant) means that the average link length l̄ is different from
λ. v̄ is the average dislocation velocity related to the strain
rate _γ through the Orowan equation, _γ ¼ ρbv̄. Since not all
collisions result in the formation of a stable junction, we
introduce a nondimensional parameter β, which is the
fraction of collisions that leads to stable junction formation,
so that the junction formation rate is βR. We assume that
each time a stable junction forms, two dislocation links
become four links, so that the rate at which the number of
links increases is

_N ¼ 2βfρ2v̄ ¼ 2βfρ
b

_γ: ð4Þ

Assuming that the exponential distribution is always main-
tained, it follows that N¼ϕ1=2ρ3=2 and _N¼3

2
ϕ1=2ρ1=2 _ρþ

1
2
ϕ−1=2ρ3=2 _ϕ, leading to the dislocation multiplication rate

_ρ ¼ 4βf_γ
3

ffiffiffiffi
ϕ

p
b

ffiffiffi
ρ

p
−

_ϕ

3ϕ
ρ: ð5Þ

Interestingly, the dislocation multiplication rate expres-
sion in Eq. (5) is consistent with the Kocks-Mecking model
[6], _ρ ¼ K1

ffiffiffi
ρ

p − K2ρ, with K1 ¼ ½ð4βf_γÞ=ð3 ffiffiffiffi
ϕ

p
bÞ� and

K2 ¼ ½ _ϕ=ð3ϕÞ�. Here, we see that the Kocks-Mecking form
appears as a natural consequence of the exponential dis-
tribution of link lengths, although the physical origin and
temperature dependence of Eq. (5) is different from the
original Kocks-Mecking model. Combining Eq. (5) with the
Taylor relation, Eq. (1), the strain hardening rate is,

Θ ¼ _τ

_γ
¼ 1

3
αμ

�
2βfffiffiffiffi
ϕ

p −
b

ffiffiffi
ρ

p
2ϕ

_ϕ

_γ

�
: ð6Þ

Equation (6) shows that the strain hardening rate Θ is
determined by the junction formation rate β, as well as _ϕ=_γ,
the rate at which parameter ϕ changes with strain γ.
We can analyze the different contributions to the strain

hardening rateΘ in our DDD simulations in light of Eq. (6).
Specifically, we compute the dislocation density ρ and link
number density N from a series of DDD simulation
snapshots, and extract the nondimensional parameters ϕ
and β using ϕ ¼ N2=ρ3 and β ¼ b _N=ð2fρ_γÞ. Given the
assumption that the dislocation microstructure always
obeys the exponential distribution Eq. (3) (for Cu in
[001] loading), which is completely governed by param-
eters ρ and ϕ, we expect that all properties of the network
should be functions of ρ and ϕ. The junction formation rate
β is just a property of the dislocation network, and it should
therefore be a function of ρ and ϕ. Hence, for simulations
starting from the same initial dislocation density ρ0 and at

the same strain rate _γ, we expect β (on average) to be a
function of ϕ.
Figure 3 shows the evolution of dislocation micro-

structure in the nondimensional space of β − ϕ. It is
observed that during the course of the simulation, ϕ
gradually increases from about 0.4 to as high as about
1.6, accompanied by a decrease in β. This indicates that
during this early period of strain hardening, the disloca-
tion microstructure does not evolve in a self-similar
manner—not only does the density ρ increase, but the
nondimensional parameter ϕ also increases. However, the
rate of increase of ϕ slows down with increasing strain,
so that if ϕ exceeds a critical value ϕc, which occurs at
γ ≈ 1%, _ϕ=_γ becomes so small that the second term in
Eq. (6) becomes negligible compared to the first term
(see SM [28]). In this case, the strain hardening rate can
be approximated as

Θ ≈
2αβf
3

ffiffiffiffi
ϕ

p μ: ðϕ ≥ ϕcÞ: ð7Þ

Equations (6) and (7) motivate the hypothesis that the net
junction formation fraction β is the controlling factor of the
dislocation multiplication rate and strain hardening rate. In
other words, if the dislocations were not allowed to form
more junctions, the network would not have the capacity to
store more dislocations and there would not be any strain
hardening. In order to test this hypothesis, we employed
specialized DDD simulations in which junction formation
events are suppressed. With our approach (see SM [28]),
we are able to suppress selected types of junctions,
enabling us to assess the role of each junction type
(collinear, glissile, Hirth, and Lomer [38,39]). This illus-
trates the power of computational tools such as DDD in
answering fundamental questions by examining scenarios
not accessible by experiments.
Figure 4 shows the stress-strain curves obtained with

these specialized simulations. When all junctions are
suppressed, the hardening rate (at _ε ¼ 103 s−1) is greatly
reduced from 329 to 47 MPa. We believe the strain
hardening rate does not completely vanish in this case
because our modifications do not completely eliminate
junction formation events. When only one type of
junction is allowed to form, the hardening rate is
approximately 225, 117, 103, and 46 MPa for glissile,
collinear, Lomer, and Hirth junctions, respectively. This
result indicates that glissile junctions make the dominant
contribution to strain hardening. This finding is interest-
ing because the collinear junction is the strongest among
the four junctions [14]. We believe that glissile junctions
make the largest contribution because they are relatively
stable [15] and are the most likely to form, with four
forest interactions per slip system (compared to two, two,
and one for Lomer, Hirth, and collinear, respectively; see
SM [28] for further elaboration).
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Our DDD simulations have shown that the dislocation
link lengths satisfy an exponential distribution, that
junction formation is a necessity for strain hardening,
and that glissile junctions make the dominant contribu-
tion to the strain hardening rate in [001] loading of Cu.
The exponential distribution is explained by a simple
model for the effect of junction formation on the
population of dislocation lines. Analysis using the expo-
nential length distribution reveals a fundamental con-
nection between the junction formation rate (β) and the
strain hardening rate (Θ). We hope this work brings
attention to the dislocation link length distribution as an
important property of the dislocation microstructure, so
that it may be incorporated in future coarse-grained field
theories of dislocation dynamics and dislocation-based
crystal plasticity models.
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