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An atom irradiated by an off-resonant laser field near a surface is expected to experience the sum of two
fundamental potentials, the optical potential of the laser field and the Casimir-Polder potential of the surface.
Here, we report a new nonadditive potential, namely, the laser-induced Casimir-Polder potential, which arises
from a correlated coupling of the atomwith both the laser and the quantum vacuum.We apply this result to an
experimentally realizable scenario of an atomic mirror with an evanescent laser beam leaking out of a surface.
We show that the nonadditive term is significant for realistic experimental parameters, transforming potential
barriers into potential wells, which can be used to trap atoms near surfaces.
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In experiments involving an applied electromagnetic
field and particles trapped in or near material objects,
two forces of very different origin arise. One is the Casimir-
Polder (CP) force [1] arising from the interaction between
an atom and the electromagnetic vacuum field, which is
restricted and modified by the presence of nearby surfaces
[2]. The other is the optical force stemming from the direct
interaction between the applied electromagnetic field and
the atom. The latter was first applied in experiments where
micron-size dielectric spheres were trapped by two laser
beams [3], eventually leading to the first observation of
optical trapping of atoms by a single strongly focused
Gaussian laser beam [4]. Atoms can also be reflected by an
evanescent laser field at a surface, as shown, for example, in
Ref. [5] where state-selective reflection of Na atoms was
demonstrated using an evanescent field.
The CP force has been studied extensively. It is well

described by many established theoretical approaches,
ranging from a quantum-mechanical linear-response for-
malism [6,7] to macroscopic extensions of quantum
electrodynamics that incorporate material properties, see,
e.g., Ref. [8]. There are also several experimental tech-
niques to investigate this force. Almost fifty years after its
theoretical prediction, the CP force was first measured by
observing the deflection of atoms passing through a
V-shaped cavity [9]. Later, it was demonstrated that the
scattering of slowly moving atoms from a surface can also
be used to deduce the CP potential [10]. Recently,
approaches involving a single Rb atom optically trapped
close to a surface have been employed [11]. There, the sum
of the trapping potential and the CP potential determines
the equilibrium position of the atom, so that for a known
trapping potential the CP potential can be determined.
This technique has recently been used to make a first

direct measurement of CP forces between solid surfaces

and atomic gases in the transition regime between short
distances (nonretarded) and long distances (retarded) [11,12].
In this experiment, ultracold ground-state Rb atoms are
reflected from an evanescent wave barrier at a glass prism.
The question arises whether the two fundamentally

different ingredients, the CP potential (UCP) and the
light-induced optical potential (UL), can be simply added
to obtain the total potential. Being inherently related to
universal scaling laws of dispersion potentials [13], this
question is of fundamental importance. In this Letter
we report a new nonadditive laser-induced CP potential.
We show that it plays an important role under specific
experimental conditions.
The CP potential can be viewed as the modification of a

fluctuating dipole moment due to the electric field those
fluctuations induce. It is clear that this is a recursive
process; the dipole induces a field, which in turn interacts
with the dipole, changing the field it produces, which then
interacts again with the dipole and so on. Normally, only
the first step in this process is considered, where the
fluctuations of the dipole moment are taken to come from
the field that would be present if the dipole were not there.
This electric field could come from the vacuum field or a
laser field depending on the specific context. This leads to
the usual approach taken when considering atoms subject
to vacuum and laser fields; the two potentials are simply
added (cf. Ref. [14]). Here we consider and take into
account the effect of the laser field on the CP potential.
Quantum vacuum forces between an atom in its ground

state and a surface are attractive and in general not suitable
to create a stable position for the atom [15]. Nevertheless,
Ref. [16] describes the possibility of trapping ground-state
atoms by dressing them with an excited state whose
potential is repulsive in a laser field. This method is similar
in spirit to our work, especially because the laser-induced
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CP potential for the atomic ground state resembles the
excited-state CP potential (cf. Fig. 1), but has a major
difference in its assumption of a position-independent Rabi
frequency.
We describe the system using a Hamiltonian that governs

the coupling of the atom to the electric field and con-
sequently consists of a field part, an atomic part, and a
multipolar dipole-field coupling. The field Hamiltonian ĤF
can be expressed as

ĤF ¼
X

λ¼e;m

Z
d3r

Z
∞

0

dωℏωf̂†λðr;ωÞ · f̂λðr;ωÞ; ð1Þ

where f̂λ and f̂†λ are creation and annihilation operators for
composite field-matter excitations. Here we model a driv-
ing laser as being a result of a source occupying a volume
VS in space. This leads us to represent field states as a
product

jψiF ¼ jffλðr;ωÞgi
r∈VS

⊗ jf0gi
r∉VS

ð2Þ

of coherent excitations jffλðr;ωÞgi in the source region
and the vacuum state jf0gi for all other regions. If the
annihilation operator f̂λðr;ωÞ acts on the state (2), there are,
consequently, two contributions

f̂λðr;ωÞjψiF ¼
�
fλðr;ωÞjψiF if r ∈ VS

0 if r ∉ VS
: ð3Þ

The atom-field Hamiltonian ĤAF ¼ −d̂ · ÊðrAÞ in the
multipolar coupling scheme is determined by the electric
field at the atom’s position rA and the dipole operator d̂.

The electric field is given by the respective classical
Green’s tensor Gðr; rA;ωÞ and the field operator
f̂λðr;ωÞ. Solving the Heisenberg equation of motion for the
field operator using the field Hamiltonian ĤF (1) and
the coupling Hamiltonian ĤAF and inserting this back into
the electric field, the final expression for the time-dependent
electric field operator yields

Êðr;ω; tÞ ¼ Êfreeðr;ω; tÞ þ Êindðr;ωÞ
¼ Êðr;ωÞe−iωðt−t0Þ

þ iμ0
π

ω2

Z
t

t0

dt0e−iωðt−t0ÞImGðr; rA;ωÞ · d̂ðt0Þ;

ð4Þ

where μ0 is the permeability of free space. The induced
contribution represents the inhomogeneous part of the
solution and couples the Green’s tensor to the atomic
dipole moment as shown in Ref. [17]. The state (3) can
be inserted into Eq. (4)where the free component ismodeled
as a classical laser driving field of frequencyωL at the atom’s
position, EðrA; tÞ ¼ EðrAÞ cos ðωLtÞ. In a similar way, one
can compute the Heisenberg equation of motion for the
atomic flip operator ÂmnðtÞ [18] defined in such a way that
the atomic part of the Hamiltonian is ĤA ¼ P

nEnÂnn.
We first assume that the atom-field coupling is weak

and that the field is far-detuned from the atomic reso-
nance. This assumption is later relaxed to obtain a more
general result, as described in Ref. [19]. The electric field
(4) is evaluated using the Markov approximation for weak
atom-field coupling and we discard slow nonoscillatory
dynamics of the flip operator by setting Âmnðt0Þ ≃
eiω̃mnðt0−tÞÂmnðtÞ for the time interval t0 ≤ t0 ≤ t. To apply
the Markov approximation we have assumed that the
atomic transition frequency ω̃10 is not close to any narrow-
band resonance mode of the medium. If there were such a
mode, the atom would mostly interact with it, similar to
a cavity. In this case the mode could be modeled by a
Lorentzian profile [18,20,21].
The parameters entering the dynamics are the shifted

frequency ω̃mn ¼ ωmn þ δωmn, where ωmn is the atom’s
pure eigenfrequency and the CP frequency shift δωmn
due to the presence of the surface, and the rate of
spontaneous emission Γmn. The fast-oscillating nondiago-
nal parts ÂmnðtÞ can be decoupled from the slowly
oscillating diagonal operator terms ÂmmðtÞ by assuming
that the atom does not have quasidegenerate transitions.
Moreover the atom is unpolarized in each of its energy
eigenstates so that dmm ¼ 0, which is guaranteed by atomic
selection rules [18]. Finally, we assume the atom stays in its
initial state with hÂklðt0Þi≈hÂklðtÞi≈δknδln. Consequently,
to compute the dipole moment we only need the non-
diagonal elements of the atomic flip operator
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FIG. 1. Difference ΔU ¼ UCP − ULCP for a perfectly con-
ducting mirror with reflective coefficients rs ¼ −1 and rp ¼ 1.
The laser intensity is I ¼ 5 W=cm2 used for Rb atoms with a
transition frequency of ω̃10 ¼ 2.37 × 1015 rad=s. The detuning
is Δ ¼ 2π × 108 rad=s. The angle between the z axis and the
orientation of the field EðrAÞ is θ ¼ π=2.
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h _̂AmnðtÞi ¼ iω̃mnhÂmnðtÞi −
1

2
½Γn þ Γm�hÂmnðtÞi

þ i
ℏ

X

k

½hÂmkðtÞidnk − hÂknðtÞidkm� ·EðrA; tÞ:

ð5Þ

Similar to the electric field (4), the equation for the time
evolution of the dipole operator d̂ðtÞ can be split into free
and induced (electric field dependent) parts d̂freeðtÞ and
d̂indðtÞ, given, respectively, by the first and second lines
of Eq. (5).
In the Markov approximation, we use the expression of

the complex atomic polarizability for an atom in a spheri-
cally symmetric state with negligible damping

αnðωÞ ¼
2

3ℏ

X

k

ω̃knjdnkj2
ω̃2
kn − ω2

1; ð6Þ

where 1 is the unit matrix. The dipole moment in the time
domain reads

hd̂indðtÞin ¼
1

2
½αnðωLÞEðrAÞe−iωLt þ H:c:�; ð7Þ

which oscillates with the laser frequency ωL. An equivalent
expression for the induced electric field Êindðr; tÞ is
obtained in a similar way.
The quantity we are interested in is the total potential

U ¼ − 1
2
hd̂ðtÞ · ÊðrA; tÞi, which consists of various con-

tributions as shown in Table I. The order of the terms is
determined by the number of dipole moments. At leading
order, the induced part of the field (dipole moment)
depends on the free part of the dipole moment (field),
given by the first iteration of Eq. (4). This leads to two well-
known potentials, namely, the laser-light potential and the
standard, undriven CP potential. Going one iteration further
yields an additional contribution containing four dipole

moments in total, the CP potential under the influence of
the driving laser field. This contribution is nonadditive; i.e.,
the total potential experienced by the atom can no longer be
obtained simply by summing the Casimir-Polder potential
and the laser-induced potential. We will show that this
nonadditive contribution can be significant under certain
circumstances.
The term of lowest order hd̂freeðtÞ · ÊfreeðrA; tÞi contains

the free dipole moment and the free electric field. For
r0 ∈ VS, this expression leads to the vanishing expectation
value of the free dipole moment hd̂freeðtÞi ¼ 0. In the
case of r0 ∉ VS, this term vanishes as well according to
Eqs. (2) and (3). The occurrence of a free dipole moment is
the reason for the terms of odd order to vanish. The
standard, undriven CP potential is obtained from the term
hd̂freeðtÞ · ÊindðrA; tÞi [22]

UCPðrAÞ ¼
ℏμ0
2π

Z∞

0

dξξ2αnðiξÞTrGðSÞðrA; rA; iξÞ

−
μ0
3

X

k<n

ω̃2
nkjdnkj2Tr½ReGðSÞðrA; rA; ω̃nkÞ�: ð8Þ

GðSÞðrA; rA; ω̃nkÞ is the scattering part of the classical
Green’s tensor GðrA; rA; ω̃nkÞ. The CP potential can be
split into resonant and off-resonant contributions, where
the ground state only shows the latter. The third term
of the total potential U results in the laser-light potential
hd̂indðtÞ · ÊfreeðrA; tÞi ¼ hd̂indðtÞi ·EðrA; tÞ from the coher-
ent time-averaged electric field ðr0 ∈ VSÞ,

ULðrAÞ ¼ −
1

4
αnðωLÞE2ðrAÞ; ð9Þ

and the fourth termof the total potential hd̂indðtÞ · ÊindðrA; tÞi
vanishes again both for r0 ∈ VS and r0 ∉ VS.
We are interested in a higher-order iteration, where the

induced part of the dipole moment itself depends on the
induced part of the electric field, while the induced electric
field itself contains the induced dipole moment. Combining
the two high-order perturbative expressions for d̂ and Ê
leads to the final result for the driven CP potential

ULCPðrAÞ

¼ −
1

2
hd̂indðtÞ · Êð2Þ

indðrA; tÞi −
1

2
hd̂ð2Þ

indðtÞ · ÊfreeðrA; tÞi

¼ −
μ0ω

2
L

2
α2nðωLÞEðrAÞ · ReGðSÞðrA; rA;ωLÞ ·EðrAÞ:

ð10Þ

This expression contains induced dipole moments and
induced electric fields, both of second order. The CP force
corresponding to the potential (10) is computed by taking

TABLE I. Summary of contributions to the total potential U.
The contributions to lowest order (yellow) form the ordinary CP
potential UCP and the laser-light potentialUL. Higher-order terms
(green) build up the nonadditive laser-induced CP potentialULCP,
with certain terms vanishing as explained in the main text.
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the gradient of the potential FLCPðrAÞ ¼ −∇AULCPðrAÞ
and can be expressed using the two contributions

∇hd̂ð2Þ
ind · ÊfreeðrÞir¼rA þ∇hd̂ind · Ê

ð2Þ
indðrÞir¼rA , where one

can use the relation ∇EðrAÞ ·EðrÞjr¼rA ¼ 1
2
∇AE2ðrAÞ

and the symmetry of the Green’s tensor
∇GðSÞðr; rAÞjr¼rA ¼ 1

2
∇AGðSÞðrA; rAÞ.

Figure 1 shows the difference between the laser-induced
CP potential and the standard CP potential UCP for a

perfectly conducting mirror, whose Green’s tensor is well
known. The laser-induced potential for a constant laser
potential is similar to the CP potential of an excited atom.
The strongest addition effect of ULCP is seen in the
nonretarded regime, which we investigate further for a
more realistic evanescent laser field.
For simplicity we first consider a two-level, isotropically

polarized atom a distance z away from a dielectric
half-space described by s (transverse electric: TE) and p

FIG. 2. Upper figure: Total potential with (solid lines) and without (dotted lines) the nonadditive term calculated here, for three
different values of the potential scale U0. The dashed lines are the total potential using the perturbative result, as opposed to the
nonperturbative one. The parameters taken from Refs. [11,12] are as follows: decay length z0 ¼ 430 nm, detuning Δ ¼ 2π × 108 Hz,
dipole moment d ¼ 2.53 × 10−29 Cm, transition frequency ω̃10 ¼ 2.37 × 1015 rad=s and quality factor Q ¼ 37.5 ¼ −ReðrpÞ. As
reported in Ref. [11] the potential scale is given by U0 ∼ PðWÞ × 10−23 J=W, meaning the range of values chosen for this quantity are
commensurate with milliwatt laser power. The lower figure shows the positions of the minima and maxima of the additive potential UA
(dotted), the perturbative potential UP

NA (dashed) and exact nonadditive potential UE
NA (solid) as a function of the potential scale U0 and

the distance. This demonstrates that the nonadditive potential undergoes a transition from a traplike to barrierlike as a function of the
atom-surface distance, while the additive potential remains barrierlike for all parameters shown here.
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(transverse magnetic: TM) polarized reflection coefficients
rs and rp. We display our formulas in the nonretarded
(small z) limit, but all plots are produced including the
effects of retardation. We find,

ULCP ¼ −
jdnkj2

192πϵ20z
3

Ω2

Δ2
Rerp ¼ UCPUL

Rerp
ℏΔ

; ð11Þ

where we have definedΩ≡EðrAÞ·dnk=ℏ andΔ¼ωL−ω̃10,
and on the right-hand side we have written the result in a
suggestive form. This tells us that the laser-assisted Casimir-
Polder potential is given by the product of the laser potential
and the Casimir-Polder potential, modulated by the detuning
Δ and the reflection coefficient rp.
So far we have used a perturbative approach that is valid

for a large detuning Δ. As we shall see later, this is not
reliably satisfied for the particular application to the
evanescent laser field, since the detuning and Rabi fre-
quency Ω turn out to be of the same order of magnitude.
Repeating the calculation by solving the optical Bloch
equations, we find a more general nonperturbative result
(see Ref. [19] for details);

UNP
LCP ¼ −

jdnkj2
192πϵ20z

3

Ω2

Δ2 þ Ω2
Rerp; ð12Þ

which is seen to reduce to the perturbative result (11) in the
large-detuning limit. The potential arising from an evan-
escent laser field can be written as UL ¼ U0e−2z=z0 , where
U0 is a constant that sets the scale of the interaction, and z0
is its range. The electric field that is associated with this
potential satisfies E2

L ¼ 6ℏΔUL=d2, which gives the Rabi
frequency as Ω2

L ¼ 6ΔUL=ℏ.
The final ingredient we require is the electromagnetic

response of the surface, described by a permittivity ε, which
enters into Eq. (12) through the nonretarded limit of the p-
polarized reflection coefficient: rp ¼ ðε − 1Þ=ðεþ 1Þ. By
taking the Drude-Lorentz model as a basis, the reflection
coefficient becomes rp ≈ ωS=2γ with the plasmon reso-

nance frequency ωS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ω2

P=2
p

, which in turn
depends on the absorption line frequency ω0, the plasma
frequency ωP and the damping constant γ, cf. Ref. [16]. It is
important to note that the real part of the reflection
coefficient has both positive and negative wings around
its resonance frequency, so that when viewed as a quality
factor ReðrpÞ ¼ �Q. As shown in Refs. [23–26], surface
plasmon resonances, connected in the context of CP
potentials, can be used to produce a maximum Purcell
enhancement factor (or quality factor Q) of up to 60.
In order to produce concrete predictions, we consider the

setup of Refs. [11,12], where an evanescent wave is created
close to a surface creating a repulsive dipole potential into
which a rubidium atom is placed. In order to assess the
contribution of our nonadditive term ULCP we compare the

“additive” potential UA ¼ UCP þ UL to that with the exact
nonadditive term included:UE

NA ¼ UCP þUL þ UNP
LCP. Our

results are shown in Fig. 2, and demonstrate that the
nonadditive term calculated here has a drastic effect on
even the qualitative character of the potential. The pertur-
bative version UP

NA ¼ UCP þ UL þ ULCP of the laser-
assisted Casimir-Polder potential is shown for reference,
it is seen that the qualitative character of the effect is
captured in the perturbative regime, but precise predictions
require the nonperturbative result.
In this Letter we have derived and theoretically evaluated

a nonadditive laser-induced CP potential. The electric field
and the dipole moment were each split into a free
contribution and an induced contribution, each of which
depends on the other. In this way the laser light potential
and the standard CP potential are reproduced as lowest-
order terms. The higher-order correction term leads to the
nonadditive potential which we have derived in both a
perturbative and nonperturbative approach. We have shown
that this term makes a significant contribution under certain
experimental conditions. If the laser power is high enough
and in combination with an additional enhancement by a
surface plasmon resonance, the occurrence and position of
barriers and minima in the total potential can significantly
change, leading to local minima, which can be used to trap
atoms near surfaces.
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