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We theoretically study an ultracold gas of spin-1 polar bosons in a one-dimensional continuum, which
are subject to linear and quadratic Zeeman fields and a Raman induced spin orbit coupling. Concentrating
on the regime in which the background fields can be treated perturbatively, we analytically solve the model
in its low-energy sector; i.e., we characterize the relevant phases and the quantum phase transitions between
them. Depending on the sign of the effective quadratic Zeeman field ϵ, two superfluid phases with distinct
nematic order appear. In addition, we uncover a spin-disordered superfluid phase at strong coupling. We
employ a combination of renormalization group calculations and duality transformations to access the
nature of the phase transitions. At ϵ ¼ 0, a line of spin-charge separated pairs of Luttinger liquids divides
the two nematic phases, and the transition to the spin-disordered state at strong coupling is of the
Berezinskii-Kosterlitz-Thouless type. In contrast, at ϵ ≠ 0, the quantum critical theory separating nematic
and strong coupling spin-disordered phases contains a Luttinger liquid in the charge sector that is coupled
to a Majorana fermion in the spin sector (i.e., the critical theory at finite ϵ maps to a quantum critical Ising
model that is coupled to the charge Luttinger liquid). Because of an emergent Lorentz symmetry, both have
the same logarithmically diverging velocity. We discuss the experimental signatures of our findings that are
relevant to ongoing experiments in ultracold atomic gases of 23Na.

DOI: 10.1103/PhysRevLett.121.083402

The interplay of internal quantum states and strong
interactions can lead to the emergence of new quantum
phases ofmatter and criticality. For example, while spin-1=2
quantum magnets can only sustain conventional magnetic
order, larger spin systems allow for order in higher angular
momentum channels involving multipole moments in large
spin systems [1–3]. Spinful ultracold atomic gases are a
particularly fruitful setting to study magnetic phenomena
with spinsS > 1=2, where optical traps allow for the cooling
andmanipulation of all of the internal hyperfine states of the
atom, thus realizing atomic gases with a large spin (e.g., 52Cr
with S ¼ 3) [4,5]. This can lead to superfluids with non-
trivial magnetic structure that spontaneously break both
charge conservation and spin rotation symmetries [6,7].
Ultracold spin-1 bosons are an ideal system to study

nontrivial magnetism beyond conventional vector magnetic
order parameters. A pivotal microscopic ingredient is the
spin dependent interaction g2, which can either be ferro-
magnetic (g2 < 0) or polar (g2 > 0) [5] and leads to
different ground states displaying either nonzero or zero
spin expectation value, respectively [6,7]. In the following,
we concentrate on the polar case, which is readily realized
with 23Na gases [5]. The condensate wave function can be
written as a three-component spinor ΨMF ¼ ffiffiffi

ρ
p

eiϑn̂, where
the superfluid phase ϑ and the unit vector n̂ parametrize the
ground state manifold. The polar condensate has nematic
order signaled by nonzero eigenvalues of a rank-2 tensor

order parameter [6,7]. A quadratic Zeeman field [8] lifts the
degeneracy, and the ground state spinor is given by either
n̂ ¼ ð0; 1; 0ÞT or a planar state n̂ ¼ ðeiφ; 0; e−iφÞT , depend-
ing on the sign of the quadratic Zeeman field [4]. In recent
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FIG. 1. (a) Phase diagram in the plane spanned by effective
quadratic Zeeman field ϵ ¼ qþ Θ2=ð2mÞ and spin-spin inter-
action g2. For explanations on the two nematic phases and the
spin liquid, see the main text. The nonuniversal position gc of
the BKT transition is marked by a star. (b) Difference of the only
nonzero nematicity tensor components hNzz − Nyyi; note that it
is odd in ϵ and hNyy þ Nzzi ¼ 1. The characteristic power law is
nonuniversal jϵj1=ð2Ks−1Þ, Ks ≥ 2 for g2 ≤ gc, and linear for
g2>gc. (c) The mz¼0 component of the Bose-Einstein
condensate wave function (the order parameter) scales as
ϵð1=4Þ=ð2Ks−1Þ for g2≤ gc and ðϵ − ϵIÞ1=8 for g2 > gc.
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experiments, it has been demonstrated that it is possible to
observe the nontrivial nematic order in 23Na [9] and that the
quadratic Zeeman effect can be used to drive nematic phase
transitions [10,11]. Moreover, the nematic planar phase is
interesting due to the different types of topological defects
that can result from the winding of the phase ϑ → ϑþ 2π
or the combined operation of a half-winding of the phase
ϑ → ϑþ π and an inversion of the spinor n̂ → −n̂ that
leave ΨMF unchanged [12–14], which have recently been
observed in 23Na [15].
With the latest development of artificial gauge fields, it is

now possible to couple the internal spin states of the atom
to their momentum using counterpropogating Raman
lasers, which induces an effective spin orbit coupling
(SOC) [16]. Spin orbit coupled quantum gases can now
be realized in spinor bosons [17–21] or spinful fermions
[22] with either a one- or two-dimensional SOC [23–26].
In bosonic gases, this gives rise to “striped” superfluids
[27–36] that condense at the degenerate momenta dictated
by the spin orbit wave vector. While the phase diagram
is now reasonably well understood, spin orbit coupled,
polar, spin-1 gases offer an exciting platform to study the
competition between different types of nematic order and
hold great promise for intriguing forms of quantum
criticality. A majority of the theoretical [28,32–35,37,38]
and experimental [17–21] work has focused on quantum
phase transitions (QPTs) that are driven by the strength of
the Raman field and are accessible in both pseudospin-1=2
and spin-1 bosons. Interestingly, for polar spin-1 bosons,
the phenomena and nematic QPTs that can be evoked by
SOC goes beyond transverse field induced transitions and
remains largely unexplored apart from mean field (MF)
[35,39] and variational solutions [33,36,40]. Our work aims
to fill this gap by developing a field theory description of
nematic QPTs.
One major difficulty in theoretically capturing the inter-

play between nonperturbative topological defects, SOC, and
nematic order is that it requires a strong coupling solution
beyond any MF-like description. Thus, one of the most
felicitous realms to study spin orbit coupled polar spinor
bosons are one-dimensional (1D) systems,which represent a
common setup for ultracold atom experiments. This is due to
the existence of strong analytical tools that allow for
asymptotically exact low-energy solutions that take into
account both the inherent strong coupling nature of 1D and
topological defects [41–43]. The effective field theory of
polar spin-1 bosons in the absence of a SOC is described by a
spin-charge separated Lagrangian, the charge is described
by a gapless Luttinger liquid (LL), and the spin sector is
given by a 1D nonlinear sigma model (NLσM) [41,43]. A
SOCdirectly couples the spin and charge degrees of freedom
and therefore it is in no way obvious if spin-charge
separation can still persist in spin orbit coupled gases.
Summary of results and experimental predictions.—We

consider a gas of 1D polar spinor bosons in the presence of

a SOC (wave vector Θ) and a linear (quadratic) Zeeman
field hp (q). We treat the strength of background fields
perturbatively and derive the effective low-energy field
theory that describes a LL coupled to a NLσM in the
presence of anisotropic mass terms. We solve this effective
theory in the low-energy limit and determine the phase
diagram of the model (see Fig. 1). We uncover three distinct
superfluid phases: at weak coupling, two different nematic
phases, depending on the sign of the effective quadratic
Zeeman field ϵ ¼ qþ Θ2=ð2mÞ, and a spin liquid phase at
strong coupling. Furthermore, we determine the nature of
the QPTs between those phases, all of which are continu-
ous. The critical state between the two nematic phases at
weak coupling is a pair of spin-charge separated Luttinger
liquids. In contrast, the transition from either nematic phase
to the spin liquid is in the 1þ 1D Ising universality class,
with an exotic, emergent Lorentz symmetry characterized
by equal, logarithmically divergent velocities in the spin
and charge sector. Interestingly, a very similar QPT was
discussed in the physically unrelated context of Cooper
pairing near Lifshitz transitions and in topological super-
conductors [44–46]. Finally, Ising and LL QPT lines meet
at a Berezinskii-Kosterlitz-Thouless (BKT) critical point.
The hallmarks of our theory are as follows. (i) The

described phases and fluctuation induced continuous QPTs.
We emphasize that MF and variational theories predict a
first order transition at ϵ ¼ 0 and miss the spin liquid phase
completely. (ii) The order parameter of the QPTs are the
spin components of the condensate wave function [see
Fig. 1(c)]. (iii) An experimentally accessible observable is
the nematic tensor Nab ¼ δab − fSa; Sbg=2 [see Fig. 1(b)].
We predict a characteristic power law behavior of Nyy, Nzz

with nonuniversal exponents. This emblematic feature of
LL physics is out of reach of MF theory. For parameters in
typical ultracold atom experiments with quasi-1D tubes
of atoms at nano-Kelvin temperatures, we estimate Ks ∼
Oð10Þ and a system size and thermal length that exceed the
correlation length (see Supplemental Material [47]). Thus,
these power laws should be experimentally detectable.
(iv) The effect of SOC is twofold: First, the condensate
wave function in the nematic ϵ < 0 phase is heavily
modulating in space. Second, SOC strongly affects the
position of QPTs. However, somewhat strikingly, the
universal critical behaviors are independent of the SOC.
(v) Finally, the emergent Lorentz symmetry at the Ising
transitions is, at least in principle, accessible via separate
measurement of excitation spectra in charge and spin
sectors [48,49]. In the remainder, we present the theoretical
framework leading to these results and predictions.
Model.—Continuum spin-1 bosons with mass m that

are perturbed by a background helical magnetization
and a constant linear Zeeman field h⃗ðxÞ ¼ h( cosðΘxÞ;
− sinðΘxÞ; p)T , as well as a quadratic Zeeman coupling q,
can be described by the normal ordered Hamiltonian
density H ¼ ∂xΨ†∂xΨ=ð2mÞ þH2 þH4, where
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H2 ¼ qΨ†S2zΨþΨ†h⃗ðxÞ · S⃗Ψ; ð1aÞ

H4 ¼
g0
2
∶ ðΨ†ΨÞ2∶ þ g2

2
∶ ðΨ†S⃗ΨÞ2∶: ð1bÞ

We analyze the polar case g0 > g2 > 0 (g0 ∼ 32g2 in 23Na
[5]) in the semiclassical limit, in which the condensate
density ρ0 ¼ μ=g0 parametrically exceeds the inverse
coherence length 1=ξc ¼

ffiffiffiffiffiffiffiffiffi
2mμ

p
. Here, μ is the chemical

potential and we set ℏ ¼ kB ¼ 1 throughout.
The bosonic field operators Ψ, Ψ† are three component

spinors, and in the remainder, we choose the adjoint
representation of SUð2Þ as a basis of spin-1 operators
ðSaÞbc ¼ −iϵabc, with a; b; c ∈ fx; y; zg. The quartic term
can be recast into the form H4 ¼ ðg0 þ g2Þ=2: ðΨ†ΨÞ2:
−g2=2: ½Ψ†Ψ��½ΨTΨ�: so that the ½Uð1Þ ×Oð3Þ�=Z2 sym-
metry of the unperturbed action becomes manifest.
Equation (1) describes the quantum fluid in the lab frame,
the frame corotating with the Raman field can be accessed
by Ψ → eiΘxSzΨ. In this frame, Eq. (1) retains its structure,
except for h⃗ → hð1; 0; pÞT and ∂x → ∂x þ iΘSz (this
yields q → ϵ ¼ qþ Θ2=2m).
In order to solve Eq. (1) in its low-energy sector, we

perform a sequence of coarse graining steps, which are
motivated by the assumption of the hierarchy of length
scales presented in Fig. 2. The meaning of each of those
scales will be explained at the appropriate position of the
main text. Since the dispersion relation of collective modes
is linear [see Eq. (2) below], the conversion to equivalent
time (energy) scales follows trivially.
Effective low-energy theory.—As a first step towards the

asymptotic solution of Eq. (1), we derive the effective long-
wavelength Matsubara field theory [41,43] (for details,
see Supplemental Material [47]). It is convenient to choose
an Euler angle parametrization Ψ ¼ ffiffiffi

ρ
p

eiϑOeiα4λ4eiα6λ6 êz,
with λi being Gell-Mann matrices. This representation
separates the Goldstone modes eiϑ, O ¼ eiα7λ7eiα5λ5 living
on the manifold ½Uð1Þ ×Oð3Þ=Oð2Þ�=Z2 from the massive
longitudinal modes α4 and α6 from the outset. This
representation of the complex unit vector Ψ= ffiffiffi

ρ
p

provides
a regular Jacobian leading to the NLσM measure for the
Goldstone field n̂≡Oêz ∈ S2. While constant ϑ and O

fields are zero modes ofH −H2, Eqs. (1a) and (1b) ensure
that the longitudinal modes take the saddle point values
ρMF ¼ ρ0 − qn̂S2z n̂=g0, α4;MF ¼ −iêzOTh⃗ · S⃗Oêx=½2ρ0g2�,
and α6;MF ¼ −iêzOTh⃗ · S⃗Oêy=½2ρ0g2�, which are perturba-
tive in hg0=ðμg2Þ but nonperturbative in q. Fluctuations
around the saddle point Δρ (Δα4;6) decay on the length
scale ξc (ξs ¼

ffiffiffiffiffiffiffiffiffiffiffi
g0=g2

p
ξc). To access the physics at longer

scales, we perform the Gaussian integration of massive
modes, assuming that O and ϑ are slow. We switch to the
corotating frame and obtain the effective low-energy
Lagrangian L ¼ L0 þ L1 þ L2,

L0 ¼ Δϵn̂S2z n̂ − Δhn̂ðSx þ pSzÞ2n̂; ð2aÞ

L1 ¼ −i _ϑλϵn̂S2z n̂þ λh _̂nSxn̂þ iλΘn̂0Szn̂; ð2bÞ

L2 ¼
Kc

2πvc
½ _ϑ2 þ v2cϑ02� þ

Ks

2πvs
½j _̂nj2 þ v2s jn̂0j2�: ð2cÞ

The kinetic part of the action [Eq. (2c)], which we denote as
L2 ¼ LLL½ϑ� þ LNLσM½n̂�, contains bare coupling constants
Kc;s ¼

ffiffiffi
2

p
πρ0ξc;s and velocities vc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0g0=m

p
and vs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ0g2=m
p

. We omitted anisotropic corrections to kinetic
terms due to q, Θ, and h, because they are small and will
renormalize to zero quickly. In addition to the known
kinetic term L2, Eq. (2) contains symmetry breaking terms
with no derivatives Δϵ ¼ ρ0ϵ, Δh ¼ h2=2g2 and one
derivative λϵ ¼ ϵ=g0, λh ¼ h=g2, λΘ ¼ Θρ0=m, which are
the focus of this Letter. In the Supplemental Material [47],
we treat a weak trapping frequency ωk ≪ mg20 via the
replacement ρ0 → ρ0½1 − x2=l2trap�. We find that this intro-

duces the largest finite length scale (ltrap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ=mω2

k
q

Þ into
the problem, which is less restrictive then the presence of
finite temperature (lT ¼ vs=T), and their combined effect
rounds out the observable critical properties (see Fig. 2).
Characterization of phases.—We begin the asymptotic

solution of Eq. (2) by determining all phases and their
characteristics [see Fig. 1(a)]. Ground states that are also
accessible to variational [33,36,40] and MF [35,39] treat-
ments follow from the consideration of the potential term
ΔϵS2z − ΔhðSx þ pSzÞ2, which independently of p predicts
a first order transition at ϵ ¼ 0 [47]. For p ¼ 0, it has
eigenvalues Δϵ, Δϵ − Δh, −Δh with eigenstates êx, êy, êz,
respectively (for p ≠ 0, see Supplemental Material [47]).
At finite h, the ground state at ϵ > 0 (ϵ < 0) is ΨMF ≃ffiffiffiffiffi
ρ0

p
eiϑ½êz þ hêy=ð2g2ρ0Þ� (ΨMF ≃

ffiffiffiffiffiffiffiffi
ρMF

p
eiϑ½êy − hêz=

ð2g2ρ0Þ�), where the finite h corrections stem from αMF
4;6 .

This state is denoted UN⊥ (UNk þ XY spiral) because
at MF level it displays uniaxial nematic order hNzzi ¼
ρ0 þOðh2Þ [hNyyi ¼ ρ0 þOðh2Þ]. Both states show
weak magnetization hSxi ¼ −h=g2. In the lab frame, the

FIG. 2. Length scales of the problem away from criticality. The
large superfluid density and the slow SOC pitch ρ0≫1=ξc;s≫Θ
enable the controlled derivation of Eq. (2). The perturbative
inclusion of the effective fields jϵj, h ≪ μ, implies ξc;s ≪ ξΔh

<
ξΔϵ

(the last inequality reflects the focus on SOC). At each length
scale ξc;s;Δh;Δϵ

, certain modes freeze and an effective theory
emerges.
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magnetization follows the helical magnetic field and, for
ϵ < 0, there is a strong modulation of the superfluid wave
function because bosons condense at finite momentum
k ¼ Θ, producing a stripe superfluid [47]. MF theory
predicts a first order transition at ϵ ¼ 0: the ground state
in the spin sector becomes degenerate and the order param-
eter hNabi changes discontinuously. Finally, there is a third
phase in which the spin sector is quantum disordered, i.e.,
a spin liquid [43]. This occurs when Ks → 0, a scenario
that is not captured by the bare parameters entering Eq. (2)
but can be reached upon RG transformations.
Characterization of phase transitions.—Having identi-

fied the three phases of the problem, we now characterize
the nature of the QPTs between them. We first discuss
the RG flow close to the repulsive fixed point Ks ¼ ∞ at
small Δϵ;h, λϵ;h;Θ. It is well known that dKs=db ¼ −1=2þ
Oð1=Ks;Δϵ;h; λϵ;h;ΘÞ. As usual, b denotes the running
logarithmic scale. The unperturbed weak coupling theory
suggests that the spin liquid is approached at the length
scale ξSL ∼ ξs expð

ffiffiffi
2

p
πρ0ξsÞ. However, the scaling dimen-

sions of Δϵ;h, λϵ, and λh;Θ are ½2 − 3=ð2KsÞ�, ½1 − 3=ð2KsÞ�,
and ½1 − 1=ð2KsÞ�, i.e., RG relevant at weak coupling.
We define the length scales ξΔϵ;h

self-consistently as the
scale when the couplings Δϵ;hðbÞ hit the running scale,
by assumption ξΔh

< ξΔϵ
. Beyond ξΔh

the NLσM field
is locked to the easy plane n̂ ¼ (0; sinðϕÞ; cosðϕÞ)T
perpendicular to the background magnetization realizing
a spin-floplike phase of itinerant polar bosons. Following
Fig. 2, a sine-Gordon theory emerges. The coupling to
the charge Luttinger liquid is characterized by LEP ¼
LLL½ϑ� þ L̃,

L̃ ¼ Ks

2πvs
½ð _ϕÞ2 þ v2sðϕ0Þ2� þ ½Δϵ − i _ϑλϵ�sin2ðϕÞ: ð3Þ

All coupling constants in Eq. (3) are evaluated at the scale
ξΔh

and we absorbed a factor of 1=ð1þ p2Þ into Δϵ, λϵ.
Note that, while Kc ≫ 1 by assumption, Ks is large only if
ξΔh

≪ ξSL and may be renormalized to values of the order
of unity or even smaller otherwise. In terms of Eq. (3), the
phase UN⊥ (UNk þ XY spiral) is characterized by hϕi ¼
0mod π (hϕi ¼ π=2mod π).
The fields entering Eq. (3) allow for various topological

defects: 2π phase slips in ϑ and ϕ fields as well as π phase
slips in ϑ accompanied with a �π phase slip in ϕ [12].
The scaling dimensions [13,47,50] of the associated fugac-
ities (Boltzmann weights) are ð2 − KcÞ, ð2 − KsÞ, and
½2 − ðKc þ KsÞ=4�, respectively. Therefore, in the given
parameter regime ðKc ≫ 1Þ, only the fugacity y of 2π
phase slips in the spin field ϕ may be relevant. We
incorporate the associated operator into Eq. (3) and derive
[47] the weak coupling RG equations to second order in λϵ,
Δϵ; y and to zeroth order in 1=Kc, extending the previously
reported [51] results to the case of finite λϵ,

dΔϵ

db
¼ ð2 − 1=KsÞΔϵ;

dy
db

¼ ð2 − KsÞy;
dKs

db
¼ Δ2

ϵ − K2
sy2;

dλϵ
db

¼ ð1 − 1=KsÞλϵ;
dðKc=vcÞ

db
¼ λ2ϵ

Ksvs
;

dðKcvcÞ
db

¼ dvs
db

¼ 0: ð4Þ

Regularization dependent factors were absorbed into a
redefinition of λϵ, Δϵ; y. Figure 3(a) displays the RG flow
in the plane ðΔϵ=y; KsÞ and illustrates that (i) the MF first
order transition at ϵ ¼ 0 for Ks ≥ 2 is actually continuous
and described by a line of spin-charge separated LL critical
points with enhanced symmetry, (ii) the phase transition to
the spin-disordered phase is BKT at ϵ ¼ 0, and (iii) the
quantum critical point at ϵ ≠ 0 occurs at Ks ¼ 1, but at
strong coupling Δϵ; y → ∞. At this fixed point, the spin-
charge coupling λϵ, which is relevant (irrelevant) for
Ks > 1 (Ks < 1), becomes marginal. To determine the
relevance of λϵ and the nature of the strong coupling phase
transition, Eq. (3) is fermionized [47,52] on the Ks ¼ 1
hyperplane, leading to LEP;Ks¼1 ¼ LLL½ϑ� þ LF

LF ¼ 1

2
ηT ½∂τ þ vsp̂σz þ ðMϵ þ iλ _ϑÞσyκz þMvσy�η: ð5Þ

The Majorana four spinor η is subject to massesMϵ ∼ Δϵξs,
Mv ∼ yξs and coupled to the bosonic charge field via
λ ∼ λϵξs. Pauli matrices in left-right (Nambu) space are
denoted σa (κa). At λ ¼ 0, two Ising transitions occur
at Mϵ ¼ �Mv, corresponding to the turquoise disks in
Fig. 3(a). The effective theory (5) at the critical point
corresponds to a single gapless Majorana mode coupled to
a gapless boson by a Lorentz symmetry breaking term. This
effective theory is related to the problem studied in
Refs. [44–46] by means of a Lorentz boost ðvsτ; xÞ →
ðx;−vsτÞ and an analytical continuation λ → iλ. In that
case, an attractive weak coupling fixed point λ → 0 with
emergent Lorentz symmetry and vanishing velocity vc ¼
vs → 0was uncovered, alongwith a putative phase separated

(a) (b)

FIG. 3. (a) RG flow according to Eq. (4) in the plane Δϵy ¼
0.01 (color coding as in Fig. 1). The BKT critical end point
(Ising fixed point) is represented as a yellow star (turquoise
disk). The Ising point resides at Δϵy ¼ ∞, and controlled RG
equations unveiling its emergent Lorentz symmetry [Eq. (6)],
are plotted in (b).
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region at strong coupling. Returning to our theory, it is
useful to present the one-loop RG equations in terms of
G ¼ jλj= ffiffiffiffiffiffi

Kc
p

, u ¼ vc=vs, v̄ ¼ ffiffiffiffiffiffiffiffiffi
vcvs

p
,

dG
db

¼ uG3

8

ð1 − uÞð3þ uÞ
ð1þ uÞ2 ;

du
db

¼ −
u2G2

4

ð1 − uÞ2
ð1þ uÞ2 ;

dv̄
db

¼ uv̄G2

8

10u − u2 − 1

ð1þ uÞ2 ;
dKc

db
¼ uG2

4
Kc: ð6Þ

The mass has scaling dimension 1þ uG2ðuþ 1=2Þ=
ð1þ uÞ2. Because of the imaginary coupling in our model,
the flow is reversed as compared to Refs. [44–46]; hence, v̄
increases near u ¼ 1. The first two RG equations in Eq. (6)
decouple and are plotted in Fig. 3(b). The assumption
g0 > g2 implies starting values vc > vs; therefore, the
effective theory (5) resides in the basin of attraction of the
weak coupling fixed point ðλ; vc=vsÞ ¼ ð0; 1Þ. By conse-
quence, the critical theory separating the spin disordered
from the nematic phases at finite jϵj is a theory with central
charge c ¼ 3=2, emergent Lorentz symmetry vc ¼ vs, and
logarithmically divergent velocity.
This concludes the derivation of the quantum critical

theories. The zero temperature scaling of the order param-
eter and nematic tensor (Fig. 1) is weakly rounded at finite
temperature in the center of a harmonic trapping potential
and obtained via a semiclassical evaluation using renor-
malized coupling constants (see Supplemental Material
[47]). In particular, the semiclassically expected first order
jump is washed out by the strong quantum fluctuations at
ϵ ¼ 0, which corroborates the significance of the quantum
field theoretical analysis. It will be interesting to study the
predicted QPT numerically using the density matrix
renormalization group to solve the SOC spin-1 Bose-
Hubbard model [34]. Despite the SOC removing any spin
conserving quantum numbers [37], we expect a numerical
solution that remains tractable in the superfluid regime,
provided that the truncation of the bosonic Hilbert space is
treated carefully [38].
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