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In massless quantum field theories the Landau equations are invariant under graph operations familiar
from the theory of electrical circuits. Using a theorem on the Y-Δ reducibility of planar circuits we prove
that the set of first-type Landau singularities of an n-particle scattering amplitude in any massless planar
theory, at any finite loop order, is a subset of those of a certain n-particle bðn − 2Þ2=4c-loop “ziggurat”
graph. We determine this singularity locus explicitly for n ¼ 6 and find that it corresponds precisely to the
vanishing of the symbol letters familiar from the hexagon bootstrap in supersymmetric Yang-Mills (SYM)
theory. Further implications for SYM theory are discussed.
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Introduction.—For over half a century, much has been
learned from the study of singularities of scattering
amplitudes in quantum field theory, an important class
of which are encoded in the Landau equations [1]. This
Letter combines two simple statements to arrive at a general
result about such singularities. The first is based on the long
appreciated and exploited analogy between Feynman dia-
grams and electrical circuits [2–5]. In massless field
theories, the sets of solutions to the Landau equations
are invariant under the elementary graph operations famil-
iar from circuit theory, including the Y-Δ transformation
that replaces a triangle subgraph with a trivalent vertex or
vice versa. The second is a theorem of Gitler [6], who
proved that all relevant (specified below) planar graphs can
be Y-Δ reduced to a class we call ziggurats (Fig. 2).
We conclude that the n-particle bðn − 2Þ2=4c-loop zig-

gurat graph encodes all possible first-type Landau singu-
larities of any n-particle amplitude at any finite loop order
in any massless planar theory. In Sec. VI, we discuss
several interesting implications of our result for planar
N ¼ 4 supersymmetric Yang-Mills (SYM) theory, which
provided the motivation for this work [7–10].
Landau graphs and singularities.—The Landau equa-

tions encapsulate the singularity structure of scattering
amplitudes via Landau graphs. In planar quantum field
theories, the exclusive focus of this Letter, we need only
consider plane graphs. An L-loop m-point plane Landau
graph is a plane graph with Lþ 1 faces and m distin-
guished vertices, called terminals, that lie on a common

face called the unbounded face. Henceforth, we use
“vertex” only for those that are not terminals, and “face”
only for the L faces that are not the unbounded face.
Each edge j is assigned a four-momentum vector qj, the

analog of electric current. At each vertex, the vector sum of
incoming momenta equals that of the outgoing momenta
(current conservation). This constraint is not applied at
terminals, which are the locations where a circuit can be
probed by connecting external sources or sinks of current.
In field theory, these correspond to the momenta carried by
incoming or outgoing particles. If we label the terminals
a ¼ 1;…; m (in cyclic order around the unbounded face)
and let Pa denote the four-momentum flowing into the
graph at terminal a, then energy-momentum conservation
requires that

P
aPa ¼ 0, and it implies that precisely L of

the qj’s are linearly independent.
Our interest lies in understanding the loci in Pa-space on

which amplitudes may have singularities. A Landau graph
is said to have Landau singularities of the first type (LS) at
values of Pa for which the Landau equations [1]

αjq2j ¼ 0 for each edge j; and ð1Þ
X

edges j∈F
αjqj ¼ 0 for each face F ð2Þ

admit solutions for the Feynman parameters αj (omitting
the trivial solution where all αj ¼ 0). In Eq. (1), we omitted
a term proportional to m2

j that would be present in massive
theories.
The Landau equations generally admit several branches of

solutions. The leading LS of a graph G are those associated
to branches having q2j ¼ 0 for all j (regardless of whether
any of the αj’s are zero). LS associated to branches on which
one or more of the q2j are not zero (in which case the
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correspondingαj’smust necessarily vanish) can be interpreted
as leading singularities of a relaxed graph, obtained from G by
contracting the edges associated to the vanishing αj’s.
A graph is called c connected if it remains connected

after the removal of any c − 1 vertices. The set of LS for a
1-connected graph is the union of those associated to each
2-connected component since the Landau equations com-
pletely decouple. Therefore, we can confine our attention to
2-connected graphs.
Elementary circuit operations.—We call Eq. (2) the

Kirchhoff conditions in recognition of their circuit analog
where the αj’s play the role of resistances. The analog of the
on shell conditions (1) is mysterious, but a remarkable
feature of massless theories is that: The graph moves that
are familiar from elementary electrical circuit theory
preserve the solution sets of Eqs. (1) and (2), and hence,
the sets of LS in any massless field theory.
Series reduction [Fig. 1(a)] removes any vertex of degree

two. Since q2 ¼ q1 by momentum conservation, the
Landau equations are trivially preserved if the two edges
with Feynman parameters α1, α2 are replaced by a single
edge carrying momentum q0 ¼ q1 ¼ q2 and Feynman
parameter α0 ¼ α1 þ α2.
Parallel reduction [Fig. 1(b)] collapses any bubble sub-

graph. It is easy to verify (see e.g., Appendix A.1 of [8]) the
Landau equations are preserved if the two edges of thebubble
are replaced by a single edge carrying momentum q0 ¼
q1 þ q2 and Feynman parameter α0 ¼ α1α2=ðα1 þ α2Þ.
The Y-Δ reduction [Fig. 1(c)] replaces a vertex of degree

three (a “Y”) with a triangle subgraph (a “Δ”) or vice versa.
Generically, the Feynman parameters αi of theΔ are related
to those of the Y, which we call βi, by

β1 ¼
α2α3

α1 þ α2 þ α3
; and cyclic: ð3Þ

On branches where one or more of the parameters vanish,
this relation must be suitably modified. For example, if a
branch of solutions for a graph containing a Y has β1 ¼
β2 ¼ 0 but β3 nonzero, then the corresponding branch for
the reduced graph has α3 ¼ 0 but α1, α2 nonzero.
The invariance of the Kirchhoff conditions (2) under Y-Δ

reduction follows straightforwardly from these Feynman

parameter assignments. The invariance of the on shell
conditions (1) is nontrivial, and it follows from the analysis
in Appendix A.2 of [8].
The proof of the crucial theorem of [6] that we employ in

the next section relies on three additional, relatively simple
moves, that trivially preserve the essential content of the
Landau equations. These are (d) the deletion of a “tadpole”
(edges that connect a vertex or terminal to itself), (e) the
deletion of a “hanging propagator” (a vertex of degree one
and the edge connected to it), and (f) the contraction of an
edge connected to a terminal of degree one (called “FP
assignment” [11]). The last of these is, strictly speaking, not
completely trivial at the level of the Landau equations; it
just removes an otherwise uninteresting bubble singularity.
Reduction of planar graphs.—The reduction of graphs

under circuit operations is a well-studied problem in the
mathematical literature. When it is declared that a certain
subset of vertices are to be considered terminals (which
may not be removed by series or Y-Δ reduction) the
corresponding problem is called terminal Y-Δ reducibility.
Aspects of this problem have been studied in [11–16],
including an application to Feynman diagrams in [17]. For
our purpose, the key result comes from the Ph.D. thesis of I.
Gitler [6], who proved that any planar 2-connected graph
withm terminals lying on the same face can be reduced to a
graph of the kind shown in Fig. 2, which we call ziggurat
graphs, or to a minor thereof. We denote the m-terminal
ziggurat graph by T m, and note that, a minor of a graph G
is any graph that can be obtained from G by a sequence of
edge contractions and/or edge deletions.
An edge contraction corresponds to a relaxation, while

an edge deletion corresponds to setting the associated qj to
zero. Therefore, the LS associated to any minor of a graph
G are a subset of those associated to G. Consequently, we do
not need to explicitly enumerate all minors of T m; their LS
are already contained in the set of singularities of T m itself.
It is conventional to discuss scattering amplitudes for

a fixed number n of external particles, each of which carries
some momentum pi that in massless theories satisfies

(b)

(a)

(c)

1
2

3 12

3

FIG. 1. Elementary circuit moves that preserve solution sets of
the massless Landau equations: (a) series reduction, (b) parallel
reduction, and (c) Y-Δ reduction.

FIG. 2. The four-, six-, five-, and seven-terminal ziggurat
graphs. The open circles are terminals, and the filled circles
are vertices. The pattern continues in the obvious way, but note,
there is an essential difference between ziggurat graphs with an
even or odd number of terminals in that only the latter have a
terminal of degree three.
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p2
i ¼ 0. These individual particles are denoted graphically

by attaching a total of n external edges to the terminals,
with at least one per terminal. Any graph with m ≤ n
terminals is potentially relevant to finding the Landau
singularities of an n-particle amplitude. However, if
m < n, then T m is a minor of T n, so the LS of the former
are a subset of those of the latter. Therefore, to find the LS
of an n-particle amplitude, it suffices to find those of the
n-terminal ziggurat graph T n with precisely one external
edge attached to each terminal. We call this the n-particle
ziggurat graph and finally summarize: The first-type
Landau singularities of an n-particle scattering amplitude
in any massless planar field theory are a subset of those of
the n-particle ziggurat graph.
While the LS of the ziggurat graph exhaust the set of

singularities that may appear in any massless planar theory,
we cannot rule out the possibility that in certain special
theories, the actual set of singularities may be smaller
because of a cancellation between the contributions of
different graphs to a given amplitude.We discuss this further
in Sec. VI.
The Y-Δ reduction changes (and generally reduces) the

number of faces of a graph, so the above statement does not
hold at a fixed loop order L; rather it is an all-order relation
about the full set of LS of n-particle amplitudes. Since
the n-particle ziggurat graph has L ¼ bðn − 2Þ2=4c faces, a
single computation at bðn − 2Þ2=4c-loop order suffices to
expose all possible Landau singularities of any n-particle
amplitude.
This bound is unnecessarily high. Gitler’s theorem does

not imply that ziggurat graphs cannot be reduced to graphs
of a lower loop order, and in general, this is possible:
Figure 3 shows that T 6 can be reduced to a three-loop
wheel graph whose 6-particle avatar we show in Fig. 4.
Ziggurat graphs with more than six terminals can also be
further reduced, but we have not found a lower bound on
the loop order that can be obtained for a general n.
Landau analysis of the wheel.—Here, we analyze

the Landau equations for the graph shown in Fig. 4. The
six external edges carry momenta p1;…; p6 subject toP

ipi ¼ 0 and p2
i ¼ 0 for each i. Using momentum

conservation at each vertex, the momentum qj carried
by each internal edge can be expressed in terms of the pi
and three other linearly independent momenta, which we

take to be lr, for r ¼ 1, 2, 3, as shown in the figure. Initially,
we consider the leading LS, for which we impose the on
shell conditions

ðl1 − p1Þ2 ¼ l21 ¼ ðl1 þ p2Þ2 ¼ 0;

ðl2 − p3Þ2 ¼ l22 ¼ ðl2 þ p4Þ2 ¼ 0;

ðl3 − p5Þ2 ¼ l23 ¼ ðl3 þ p6Þ2 ¼ 0;

ðl1 þ p2 − l2 þ p3Þ2 ¼ 0;

ðl2 þ p4 − l3 þ p5Þ2 ¼ 0;

ðl3 þ p6 − l1 þ p1Þ2 ¼ 0: ð4Þ

For generic pi, there are 16 discrete solutions for the lr’s,
which we denote by l�rðpiÞ. To enumerate these solutions, it
is technically helpful to use momentum twistor variables
[18], in which case the solutions can be associated with on
shell diagrams [19]. Although the analysis is still applicable
to general massless planar theories, in the special context of
SYM theory, two cut solutions have MHV support, twelve
NMHV, and two NNMHV.
The Kirchhoff conditions are

0 ¼ α1ðl1 − p1Þ þ α2l1 þ α3ðl1 þ p2Þ
þ α10ðl3 þ p6 − l1 þ p1Þ þ α11ðl1 þ p2 − l2 þ p3Þ;

0 ¼ α4ðl2 − p3Þ þ α5l2 þ α6ðl2 þ p4Þ
þ α11ðl1 þ p2 − l2 þ p3Þ þ α12ðl2 þ p4 − l3 þ p5Þ;

0 ¼ α7ðl3 − p5Þ þ α8l3 þ α9ðl3 þ p6Þ
þ α12ðl2 þ p4 − l3 þ p5Þ þ α10ðl3 þ p6 − l1 þ p1Þ:

ð5Þ

(c) (f)(c) (c)

FIG. 3. The six-terminal ziggurat graph can be reduced to a three-loop graph by a sequence of three Y-Δ reductions and one FP
assignment. In each case the vertex, edge, or face to be transformed is highlighted in gray.

FIG. 4. The three-loop six-particle wheel graph. The leading LS
of this graph exhaust all possible LS of six-particle amplitudes in
any massless planar field theory, to any finite loop order.
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Nontrivial solutions to this 12 × 12 linear system exist only
if the associated Kirchhoff determinant Kðpi; lrÞ vanishes.
By evaluating K on each solution lr ¼ l�rðpiÞ, the condition
for the existence of a nontrivial solution to the Landau
equations can be expressed entirely in terms of the external
momenta. Using

u ¼ s12s45
s123s345

; v ¼ s23s56
s234s123

; w ¼ s34s61
s345s234

; ð6Þ

where si…j¼ðpiþ���þpjÞ2, we find thatKðpi; l�rðpiÞÞ ¼ 0

can only be satisfied if an element of

S ¼
�
u; v; w; 1 − u; 1 − v; 1 − w;

1

u
;
1

v
;
1

w

�
ð7Þ

vanishes. Therefore, the three-loop six-particle wheel graph
has LS on the locus

S ¼ ⋃
s∈S

fs ¼ 0g: ð8Þ

It is straightforward to analyze all subleading LS
corresponding to relaxations. We refer the reader to
[7,8,10] where this type of analysis has been carried out
in detail in several examples. We find no additional LS
beyond those that appear at leading order. We conclude that
the LS of any six-particle amplitude in any massless planar
field theory, at any finite loop order, are given by Eqs. (7)
and (8), or a proper subset thereof.
Second-type singularities.—The LS studied here do not

exhaust all possible singularities of amplitudes in quantum
field theories. There also exist “second-type” singularities
[20,21], sometimes called “non-Landauian” [22]. These
arise in loop integrals as pinch singularities at infinite loop
momentum, and they are encoded in a modified version of
Eqs. (1) and (2).
In the next section, we consider the special case of the

SYM theory, which possesses a remarkable dual conformal
symmetry [23–25], implying that there is no invariant
notion of “infinity” in momentum space. We therefore
expect that second-type singularities should be absent in
any dual conformal invariant theory [7]. Because ziggurat
graphs are manifestly dual conformal invariant, the LS
of the ziggurat graphs should capture the entire “dual
conformally invariant part” of the singularity structure of all
massless planar theories; this means the singularity loci that
do not involve the infinity twistor.
Planar SYM theory.—In Sec. III, we acknowledged that in

certain theories, the actual set of singularities of amplitudes
may be strictly smaller than that of the ziggurat graphs due to
cancellations. Contrary to the expectation that SYM theory
might seem the most promising candidate to exhibit such
cancellations, we now argue that: Perturbative amplitudes in
SYM theory exhibit first-type Landau singularities on all
such loci that are possible in anymassless planar field theory.

Our results suggest that this statement is true separately
in each helicity sector. Specifically, for any fixed n and any
0 ≤ k ≤ n − 4, there is a finite value of Ln;k, such that the
singularity locus of the L-loop n-particle NkMHV ampli-
tude is identical to that of the n-particle ziggurat graph
for all L ≥ Ln;k. In order to verify this claim, it suffices to
construct an n-particle on shell diagram with NkMHV
support that has the same LS as the n-particle ziggurat
graph; or equivalently, to write down a corresponding
configuration of lines inside the amplituhedron [26]
An;k;L for some sufficiently high L.
To see that this is plausible, note that, the appearance of

a given singularity at some fixed k and L implies the
existence of the same singularity at lower k but higher L by
performing the opposite of parallel reductions—doubling
one or more edges of the relevant graph to make bubbles.
For example, while one-loop MHVamplitudes do not have
singularities of three-mass box type, two-loop MHVampli-
tudes do [27]. Similarly, while two-loopMHVamplitudes do
not have singularities of the four-mass box type, we expect
that three-loop MHV and two-loop NMHV amplitudes do.
(Our analysis is silent on the question of whether the symbol
alphabets of these amplitudes contain square roots; see
Sec. VII of [9].)
It is simple to convert the n-particle ziggurat graph into a

valid on shell diagram with MHV support by doubling
each internal edge into a bubble. In this way, it is easy to
write an explicit mutually positive configuration of lines
inside the MHV amplituhedron. While this construction
suffices to demonstrate the claim, it is overkill; we expect
MHV support to be reached at a much lower loop level than
this argument would require, as can be checked on a case
by case basis for a small n.
Symbol alphabets.—Let us comment on the connection

of our work to symbol alphabets. All of the singularities
tabulated in Eq. (8) are known to appear in both MHVand
NMHV six-particle amplitudes, starting at the two-loop
order [28,29]. Indeed, the hypothesis that there are no new
singularity loci at any higher loop order (which we now
consider to be proven) underlies a bootstrap program that
has made it possible for impressive explicit computations of
six-particle amplitudes in SYM theory [29–35]. An analo-
gous program for n ¼ 7 has allowed for the computation of
symbols of seven-particle amplitudes [36,37].
The hexagon bootstrap involves, in addition to the

quantities appearing in Eq. (7), three particular algebraic
functions yu, yv, yw that also vanish only on the same locus
S. This highlights the fact that the connection between LS
and symbol alphabets is somewhat indirect. Knowledge of
the former tells us about the locus where symbol letters
vanish [38] or have branch points (see Sec. VII of [9]). In
order to determine what the symbol letters of an amplitude
actually are away from these loci, it seems necessary to
invoke some other kind of structure; cluster algebras may
have a role to play here [39,40].
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Conclusion.—We leave several questions for future
work. What is the minimum loop order to which the
n-particle ziggurat graph can be reduced? Can one char-
acterize LS for an arbitrary n, generalizing the result for
n ¼ 6 in Sec. IV? It is possible to classify second-type
singularities, even if only in certain theories? The graph
moves reviewed in Sec. II preserve the LS even for
nonplanar graphs; are there results on nonplanar Y-Δ
reducibility (see e.g., [41,42]) that may be useful for
nonplanar (but still massless) theories?.
The ziggurat graphs, and those to which they can be

reduced, might warrant further study for their own sake.
They generalize those studied in [43,44], and they are
particular cases of the graphs that have attracted recent
interest, e.g., in [45,46], in the context of “fishnet” theories.
We have only looked at their singularity loci; it would be
interesting to explore the structure of their cuts, perhaps in
connection with the coaction studied in [47–51].
In SYM theory, the technology might exist to address

more detailed questions. For a general n and k, what is the
minimum loop order at which the Landau singularities of
the n-particle NkMHV amplitude saturate? Is there a direct
connection between Landau singularities, ziggurat graphs,
and cluster algebras? For amplitudes of a generalized
polylogarithm type, what are the actual symbol letters
for a general n, k, and loop order? How do LS manifest
themselves in general amplitudes that are of more com-
plicated functional type?.
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