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Primordial black holes (PBHs) have been brought back into the spotlight by LIGO’s first direct detection
of a binary–black-hole merger. One of the poorly understood properties of PBHs is how clustered they are
at formation. It has important implications on the efficacy of their merging in the early Universe, as well as
on observational constraints. In this work, we study the initial clustering of PBHs formed from the
gravitational collapse of large density fluctuations in the early Universe. We give a simple and general
argument showing that, in this scenario, we do not expect clustering on very small scales beyond what is
expected from a random, Poisson distribution. We illustrate this result explicitly in the case where the
underlying density field is Gaussian. We moreover derive a new analytic expression for the two-point
correlation function of large-threshold fluctuations, generalizing previous results to arbitrary separation,
and with broader implications than the clustering of PBHs.
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Introduction.—The intriguing possibility that primordial
black holes (PBHs) could have formed in the early
Universe out of the collapse of rare, horizon-size, order-
unity radiation fluctuations was first raised by Hawking [1].
Although more exotic formation scenarios have since then
been suggested (see, e.g., Ref. [2] for a review), this
remains the most studied to date. Hawking further posited
that these “collapsed objects… could stabilize clusters of
galaxies, which, otherwise, appear mostly not to be
gravitationally bound.” While the nomenclature has
changed since the early 1970s, the question of the nature
of dark matter remains as nagging now as it was then. Now
more than ever, PBHs are an interesting dark matter
candidate, as LIGO provides a new powerful way to search
for them [3], complementing the suite of observational tests
that have already been proposed and/or carried out (see,
e.g., Refs. [2,4,5] for a review of constraints).
An important yet relatively poorly understood property

of PBHs is their spatial clustering at formation. For one, if
PBHs form in dense clusters (as in the left panel of Fig. 1),
they may quickly merge into larger black holes, and have a
vastly different mass distribution at late times than they
started with [6–8]. In addition, observational implications
of PBHs, hence, constraints to their abundance [4,5], can be
vastly different whether they are born clustered or mostly
randomly distributed. In particular, it was argued [9] that
clustered PBHs (or compact objects in general [10]) could
evade current microlensing constraints [11,12], as well as
cosmic microwave background (CMB) limits [13–15]
resulting from their accretion-powered energy injection
[16]. Last but not least, the merger rate of PBH binaries
[17–21] depends significantly on their initial small-scale
clustering [22,23].

The first detailed study of the initial clustering of PBHs
formed from the collapse of large fluctuations was under-
taken in Ref. [24]. Assuming an underlying Gaussian
density field, they computed the two-point correlation
function of the PBH distribution, ξPBHðrÞ. Using well-
known analytic approximations, Ref. [24] found that in the
limit of zero separation, ξPBHð0Þ ≫ 1=P1, where P1 is the
probability to form a PBH in a horizon volume. This led
them to the conclusion that PBHs form in clusters, with a
large mean occupation number Nc ≈ ξPBHð0ÞP1 ≫ 1. This
interesting finding has not been revisited since then.
Here we argue on very general grounds, that in fact

1þ ξPBHð0Þ ¼ 1=P1, as one expects for objects randomly
distributed on small scales. We moreover illustrate our
general argument by studying the case of Gaussian per-
turbations, and point out the subtle point that mislead
Ref. [24]. Along the way, we derive an analytic expression
for the two-point correlation function of large-threshold
fluctuations, Eq. (15), generalizing existing results to
arbitrary separation, and accurate even for moderately
large thresholds. This new result ought to be useful in
more general setups, such as the study of biased tracers in
large-scale structure [25].
Correlation function at zero lag.—We denote by δ the

initial radiation density perturbation. The formation of a
PBH at r takes place if the radiation field satisfies some
criterion C½δ�r. A simple and often used approximation of
this criterion is that the density perturbation smoothed over
a horizon volume exceeds a critical value δc, which
depends on the shape of the fluctuation and the equation
of state of the collapsing fluid. In reality, the exact criterion
C½δ� is more complex [26,27]. As we will see, our argument
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does not require knowing its explicit from. We denote the
probability to form a PBH at position r ¼ 0 by

P1 ≡ PðC½δ�0Þ: ð1Þ

The two-point correlation function of the PBH spatial
distribution is the excess probability (over random) of
finding two PBHs with separation r [28]

1þ ξPBHðrÞ ¼
P2

P2
1

≡PðC½δ�0;C½δ�rÞ
P2
1

¼ PðC½δ�rjC½δ�0Þ
P1

; ð2Þ

where we have rewritten the joint probability PðC0; CrÞ as
the product of PðC0Þ ¼ P1 times the conditional probability
PðCrjC0Þ. The latter is always less than unity, and as a
consequence, it must be that

1þ ξPBHðrÞ ≤ 1=P1; ∀ r: ð3Þ

This inequality is saturated at zero separation, since
PðC0jC0Þ ¼ 1 (note that the correlation function need not
be continuous at r → 0 due to possible exclusion effects
[25,29,30]):

1þ ξPBHð0Þ ¼ 1=P1: ð4Þ

We emphasize that we did not make any specific
assumption about the probability distribution of the under-
lying density field in this derivation; in particular, it applies
whether the underlying field is Gaussian or not. We also
stress that our argument is independent of the details of the
formation criterion C½δ�.

Let us now explain how this implies that PBHs are
initially at most Poisson clustered on small enough scales.
The formation criterion should not depend on the density
field much outside the horizon length at formation [31];
hence, the PBH correlation function ought to drop rapidly
at larger separations. The mean number density of PBHs is
then approximately P1 per correlation length cubed, i.e.,
nPBH ∼ P1=VH, where VH is the horizon volume (this
supposes that one PBH is formed per horizon volume if
the criterion is satisfied). Therefore, ξPBHðrÞ is bounded by
a function whose value at the origin is approximately
1=ðnPBHVHÞ, and which quickly drops at separations
greater than a horizon size. This bounding function is
approximately δDiracðrÞ=nPBH, smoothed over a horizon
volume, which is what is expected for a Poisson distribu-
tion of finite-size objects. Note that the clustering can in
fact be sub-Poissonian at small separations due to exclusion
effects [25,29,30]. We expect such effects to matter only at
separations of the order of a few horizon lengths, much
smaller than scales relevant to any observational tests of
PBHs. We also emphasize that this discussion can only be
made fully quantitative with a rigorous relativistic treat-
ment, outside our scope.
Correlation function of rare overdensities of a Gaussian

field.—Let us now specify to the case where δ is a Gaussian
random field, whose statistics are, hence, entirely deter-
mined by its two-point correlation function ξðrÞ≡
hδð0ÞδðrÞi≡ σ2wðrÞ, where σ2 ≡ ξð0Þ≡ hδ2i is the vari-
ance, and 0 ≤ wðrÞ ≤ 1. The normalized correlation wðrÞ
approaches unity for small separations, and zero for large
separations. We consider the clustering of objects with the
simple formation criterion δ > δc, and denote by ν≡ δc=σ
the formation threshold in units of the standard deviation.

FIG. 1. Schematic representation of qualitatively different small-scale spatial distribution of PBHs at formation. On the left, PBHs are
in dense clusters, as predicted in Ref. [24]. On the right, PBHs are distributed approximately randomly. In this work, we argue that the
latter distribution is what is expected for PBHs forming from large density fluctuations. Note that this graphic is only schematic and
ignores relativistic gauge issues.
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We will focus in particular on the case ν ≫ 1, which is
typically expected if PBHs are to form out of the rare order-
unity fluctuations of an otherwise nearly smooth back-
ground. The probability of being above threshold is

P1 ¼
1

2
erfc

�
νffiffiffi
2

p
�
; ð5Þ

and the probability that two regions separated by r are both
above threshold is [28]

P2 ¼
Z

∞

ν

dx1ffiffiffiffiffiffi
2π

p
Z

∞

ν

dx2ffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p

× exp

�
−
x21 þ x22 − 2wx1x2

2ð1 − w2Þ
�
: ð6Þ

We now rewrite this integral in a more convenient way. We
start by changing variables to x� ≡ ðx2 � x1Þ=

ffiffiffi
2

p
, which

are two uncorrelated, Gaussian-distributed variables, as can
be seen when rewriting the exponent as

x21 þ x22 − 2wx1x2
1 − w2

¼ x2−
1 − w

þ x2þ
1þ w

: ð7Þ

The integration domain x1 > ν, x2 > ν corresponds to
x− ∈ ð−∞;∞Þ, xþ >

ffiffiffi
2

p
νþ jx−j. We therefore get

P2 ¼
1

2π

Z
∞

−∞

dx−ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p exp

�
−

x2−
2ð1 − wÞ

�

×
Z

∞ffiffi
2

p
νþjx−j

dxþffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

p exp

�
−

x2þ
2ð1þ wÞ

�
: ð8Þ

The innermost integral can be expressed in terms of a
complementary error function. A final change of variables
to x ¼ x−=

ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p
leads to the following form, well suited

for numerical evaluation:

P2 ¼
ffiffiffi
2

π

r Z
∞

0

dxe−x
2=2

×
1

2
erfc

�
νffiffiffiffiffiffiffiffiffiffiffiffi

1þ w
p

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − w
2

r
x
ν

��
: ð9Þ

So far this expression is exact, and holds for arbitrary ν. Let
us now consider the case where ν ≫ 1. We recall that for a
large argument, the complementary error function can be
approximated by

erfcðXÞ ¼ e−X
2

ffiffiffi
π

p
X
½1þOð1=XÞ�; X ≫ 1: ð10Þ

For ν ≫ 1, we may use this asymptotic expression for P1 as
well as the error function complement (erfc) inside Eq. (9)
for any value of x ≥ 0 and 0 ≤ w ≤ 1. We then find the

following asymptotic expression for the ratio P2=P1, in the
large-ν limit:

P2

P1

≈
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w
π

r Z
∞

0

dxFðxÞe−SðxÞ; ð11Þ

FðxÞ≡
�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − w
2

r
x
ν

�−1

; ð12Þ

SðxÞ≡ x2 − ν2

2
þ ð ffiffiffi

2
p

νþ x
ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p Þ2
2ð1þ wÞ

¼ 1

1þ w

�
xþ νffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffi

1 − w
p �

2

: ð13Þ

The contributions of x≳ 1 are exponentially suppressed,
and we may therefore approximate the prefactor FðxÞ ≈ 1,
while keeping the full expression for the exponent SðxÞ.
The integral over x can then be computed analytically,
giving

P2

P1

≈
1þ w
2

erfc

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − w
1þ w

r
νffiffiffi
2

p
�
; ν ≫ 1: ð14Þ

Dividing by P1 and using Eqs. (2) and (5), we arrive at our
main new result, valid for any w ∈ ½0; 1�:

1þ ξνðrÞ ≈ ð1þ wÞ
erfc

� ffiffiffiffiffiffiffi
1−w
1þw

q
ν=

ffiffiffi
2

p �
erfcðν= ffiffiffi

2
p Þ ; ν ≫ 1: ð15Þ

This expression is the asymptotic form of the two-point
correlation function of a thresholded process, in the limit of
large threshold, but arbitrary separation. We cannot further
expand the numerator without making additional assump-
tions about the relative magnitude of ν and 1=

ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p
. We

also note that, although one could consistently expand the
denominator in the large-ν limit, the expression we have
adopted is more accurate when w → 0, for large but finite ν.
We now consider limiting cases for w. First, for r → 0,

hence w → 1, we find, for any fixed ν ≫ 1,

P2 ≈
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p νffiffiffiffiffiffi
2π

p
�
P1

≈ P1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p

2π
e−ν

2=2; ð16Þ

where in the second equality we have expanded P1 in the
large-ν limit. This expression matches Eq. (10) of Jensen
and Szalay [32]. In particular, we see that P2 → P1 for
w → 1, i.e., r → 0, and we recover Eq. (4).
Now, for ν ≫ 1=

ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p
, we may expand the comple-

mentary error function in Eq. (15), and obtain
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1þ ξνðrÞ ≈
ð1þ wÞ3=2
ð1 − wÞ1=2 e

w
1þwν

2

; ν ≫ 1=
ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p
: ð17Þ

For large separations, w → 0, and w=ð1þ wÞ ¼
wþOðw2Þ. Provided ν2w2 ≪ 1, we may neglect the term
of order w2ν2, and obtain the following result, derived by
Politzer and Wise [33]:

1þ ξνðrÞ ≈ ewν
2

; w ≪ 1=ν ≪ 1: ð18Þ

Finally, if the condition w ≪ 1=ν2 ≪ 1 is satisfied, we
recover Kaiser’s well-known result [28], ξPBHðrÞ ≈ ν2wðrÞ.
We compared our analytic approximation [Eq. (15)] to

the exact correlation function obtained from numerically
integrating Eq. (9), and found excellent agreement for all
0 ≤ w ≤ 1, and for large ν. The approximation is good even
for ν ∼ 1: we find a maximum relative error on ξν of
4%; 6%, and 12% for ν ¼ 3, 2, and 1, respectively (see
bottom panel of Fig. 2). Should more accurate analytic
approximations be needed, one could easily continue our
expansion to higher orders in 1=ν, by first expanding the
error function to the next order, and consistently keeping
track of prefactors in Eq. (11).
As already pointed out by Jensen and Szalay [32], the

approximation [Eq. (18)] noticeably overestimates the
correct result at w → 1, i.e., small separation. We illustrate

this in Fig. 2 (similar to Fig. 1 of Ref. [32]), where we show
ξν computed numerically, alongside our new result,
Eq. (15), and the small-w approximation, Eq. (18).
It was Eq. (18) that was used in the derivation of

Ref. [24], where it was extrapolated to r → 0, hence,
w → 1, where it does not hold. This misled to the con-
clusion that PBHs form in clusters, as opposed to being
Poisson distributed on small enough scales.
Conclusions.—We have argued on very general grounds

that PBHs are not expected to form in clusters (depicted in
the left panel of Fig. 1), at least if they result from the
collapse of horizon-size, order-unity density fluctuations.
We do not consider other, more exotic formation mecha-
nisms, see, e.g., Ref. [34]. We illustrated our general
derivation by studying the case of underlying Gaussian
perturbations. We derived a new analytic approximation for
the correlation function of large-threshold fluctuations,
valid for arbitrary separations. Our derivation is rather
simple and can easily be extended to higher order in 1=ν.
Specifically, we showed that PBHs are not born clustered

beyond Poisson on small scales. They are still initially
clustered, in the sense that they have a nonvanishing two-
point correlation function (2 pcf). We do not attempt to
estimate this initial 2 pcf in this work, and our calculation of
the correlation function of rare overdensities of a Gaussian
field should be understood as a toy model. Indeed, such a
calculation would require, first, a detailed relativistic

FIG. 2. Two-point correlation function of regions with density δ > νσ, using the exact numerical expression (solid black), our analytic
expression, Eq. (15), valid in the large-ν regime, but arbitrary w (solid blue), and using the small-w approximation, Eq. (18) (dashed
black). The solid black and solid blue lines are nearly undistinguishable except for ν ¼ 1. The lower panels show the small fractional
error (in percent) between our simple analytic approximation, Eq. (15), and the numerical correlation function.
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criterion for the formation of PBHs, a topic which is still
under investigation [27]. Second, computing the 2 pcf on
super-horizon scales at the time of PBH formation neces-
sitates a thorough discussion of gauge issues. We refer the
reader to Refs. [35,36] for studies of the initial 2 pcf of
PBHs in the presence of primordial non-Gaussianity.
Let us also emphasize that our work is focused on the

initial clustering of PBHs. Just like for any nonrelativistic
collisionless matter, PBH density fluctuations will grow,
first linearly, and eventually form clusters and nonlinear
structures [37,38]. The 2 pcf of PBHs around z ∼ 104–105

is relevant to the computation of the PBH binary merger
rate [17,20,21], and we point to Refs. [39,40] for recent
attempts to estimate its effect. The late-time clustering
could affect observational implications of PBHs, such as
their impact on CMB anisotropies due to nonlinear motions
[14,15], or the evolution of PBH binaries formed in the
early Universe [21]. We do not attempt to study any of these
observational consequences in the present work.
In addition, Poisson fluctuations due to the discrete

nature of PBHs have been put forward as possible seeds of
cosmic structure [41,42], and as a possible explanation of
the cosmic infrared background [43]. Testing these inter-
esting proposals, and the PBH hypothesis in general, will
be made considerably simpler now that the question of the
initial clustering of PBHs has been clarified.
Our calculation ought to be valuable beyond the study of

PBHs, as it clarifies a point often misunderstood in the
literature on large-scale structure, and that can be obscured
when considering higher-order statistics (see, e.g., Ref. [44]
and references therein). Modern analytic approaches are of
course more sophisticated than the simple threshold cri-
terion that we studied [25,45]. However, our uncovering of
a new, extremely simple analytic approximation, that was
missed in three decades of research, suggests that our
method might also be fruitful for the study of more realistic
halo formation criteria.
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