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We evaluate the no-boundary path integral exactly in a Bianchi type IX minisuperspace with two scale
factors. In this model the no-boundary proposal can be implemented by requiring one scale factor to be zero
initially together with a judiciously chosen regularity condition on the momentum conjugate to the second
scale factor. Taking into account the nonlinear backreaction of the perturbations we recover the predictions
of the original semiclassical no-boundary proposal. In particular we find that large perturbations are
strongly damped, consistent with vacuum state wave functions.
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Introduction.—A fundamental theory of our quantum
universe consists of a theory of its dynamics and a theory of
its quantum state—a wave function of the Universe. The
no-boundary wave function (NBWF) of the Universe [1,2]
is perhaps the most explored candidate for the theory of
the state. In simple dynamical models it successfully
predicts important features of our observed Universe such
as the existence of classical histories [1–3], an early period
of inflation [3,4], a nearly Gaussian spectrum of pri-
mordial density fluctuations [5–7], a physical arrow of
time [8,9], etc.
A wave function of a closed universe is a functional of

the three metric hijðxÞ and field configuration ϕðxÞ on a
spacelike three-surface Σ. It is fair to say that the above
agreement of the NBWF with observation has been mostly
obtained in minisuperspace models that only explore a
limited nearly homogeneous and isotropic range of con-
figurations, and in the semiclassical approximation only.
In this approximation the no-boundary proposal for the
state amounts to the selection of a particular set of saddle
points of the action of gravity coupled to matter fields.
Nevertheless the NBWF was originally motivated by a
Euclidean functional integral construction. (The oft-used
terms “Euclidean” and “Lorentzian” path integrals are
only roughly indicative. The integration is generally over
complex contours [10].)
In this Letter we verify the validity of the no-boundary

idea by evaluating the no-boundary path integral exactly in
a Bianchi IX-type minisuperspace model. The squashed
three spheres of this model are homogeneous but can have
significant deviations from isotropy. Classically regularity
of the no-boundary saddle points implies constraints on
the metric and its first derivatives. These enter as variables
and conjugate momenta in the quantum theory. In the
anisotropic minisuperspace, which has two scale factors,

we show that a proper implementation of the no-boundary
idea as a functional integral is obtained by taking one
scale factor to be zero initially together with a judiciously
chosen regularity condition on the momentum conjugate to
the second scale factor. These conditions imply that the
classical configuration which dominates the path integral in
the semiclassical limit is regular everywhere and has both
scale factors equal to zero initially. The resulting normal-
izable quantum state predicts that both small and large
deviations from isotropy are damped, in correspondence
with previous considerations of the semiclassical Hartle-
Hawking state in similar models [11–13]. By contrast,
alternative implementations of the no-boundary idea in this
model fail to specify a well-defined state.
Biaxial Bianchi IX minisuperspace.—We consider a

homogeneous but anisotropic minisuperspace approxima-
tion to gravity coupled to a positive cosmological constant
2π2Λ and no matter fields. The classical histories in this
minisuperspace are known as biaxial Bianchi IX cosmol-
ogies which are nonlinear versions of the lowest n ¼ 2
gravitational wave mode perturbation of de Sitter space.
We write the metric of this minisuperspace model as

2π2ds2 ¼ −
NðτÞ2
qðτÞ dτ2 þ pðτÞ

4
ðσ21 þ σ22Þ þ

qðτÞ
4

σ23; ð1Þ

where σ1, σ2, and σ3 are the left-invariant one-forms
of SU(2) given by σ1 ¼ − sinψdθ þ cosψ sin θdϕ, σ2 ¼
cosψdθ þ sinψ sin θdϕ and σ3 ¼ dψ þ cos θdϕ, with
0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π and 0 ≤ ψ < 4π. The state of the
Universe is specified by a wave function Ψðp; qÞ where
the scale factors p and q are the two minisuperspace
coordinates. In the parametrization (1) surfaces of con-
stant τ are squashed three spheres. The amount of squash-
ing is conveniently expressed in terms of a parameter
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α≡ p=q − 1; the round sphere corresponding to α ¼ 0.
The semiclassical quantum cosmology of this mini-
superspace (with a particular focus on the no-boundary
proposal) was previously studied in Ref. [14] (see also
Refs. [11–13]). In this Letter we extend this work beyond
the semiclassical approximation.
In the above parametrization of the metric the Einstein-

Hilbert action can be written in phase space form as [15]

S½x;Π;N� ¼
Z

1

0

dτðΠα _xα − NHÞ; ð2Þ

up to the appropriate boundary terms, where xα ≡ ðp; qÞ,
Πα ≡ ðΠp;ΠqÞ are the momenta conjugate to p and q, and

H ¼ Πq
q
p
Πq − 2ΠqΠp þ

q
p
þ Λp − 4: ð3Þ

In Eq. (3) a factor ordering is suggested which, upon
canonical quantization of the system in position space,
gives rise to a Laplacian ordering of the derivatives. This
ensures that the quantization scheme is invariant under
changes of the minisuperspace coordinates [16]. That is,

H ¼ −
ℏ2

2
∇2 þ q

p
þ Λp − 4: ð4Þ

In the quantum theory wave functions Ψ are annihilated
by the operator version of the classical constraint H ¼ 0
leading to the Wheeler-DeWitt equation, HΨ ¼ 0. Path
integral solutions of the Wheeler-DeWitt equation may be
obtained starting from a standard quantum-mechanical
propagator between initial and final data in fixed time N
and then integrating N over some contour, as described in
more detail in the next section.
The Hamiltonian (3) is linear in the coordinate q and

the momentum Πp, which implies that the quantum system
is exactly soluble. The propagator in position space is
obtained by direct evaluation of the phase space path
integral

Kðx1; N; x0; 0Þ ¼
Zxð1Þ¼x1

xð0Þ¼x0

DxαDΠαeiS=ℏ ð5Þ

since q and Πp act as Lagrange multipliers, enforcing the
classical equations of motion upon the remaining variables.
[In Eq. (5) and the following, N is a constant.] Thus the
semiclassical “approximation” to Eq. (5) is exact, and it is
straightforward to show that

Kðx1; N; x0; 0Þ ¼
1

4πℏN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1

p0p1 − N2

r
eiS1=ℏ; ð6Þ

with

S1 ¼ N

�
4 −

Λ
3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 − N2

q
þ p0 þ p1

��

þ 1

N
½ðq0 þ q1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 − N2

q
− p0q0 − p1q1�: ð7Þ

An unambiguous definition of Eq. (6) involves specifying
its analytic structure in terms of N ∈ C, which comes down
to a choice of branch cut for the square root

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 − N2

p
.

We return to this matter below. Note that the Schrödinger
equation HK ¼ iℏ∂NK is solved by Eq. (6), and that
limN→0Kðx1; N; x0; 0Þ ¼ δðx1 − x0Þ as appropriate for the
position space propagator. We may calculate the propagator
in any other representation by Fourier transformation, e.g.,

Kðp1; q1;N;p0;Πq;0;0Þ

¼ 1

2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1

p0p1 −N2

r
δ

�
Πq;0 −

p0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 −N2

p
N

�
eiS0=ℏ;

ð8Þ

where

S0 ¼
ΛΠq;0

3
N2 þ

�
4 −

Λ
3
ð2p0 þ p1Þ

�
N − Πq;0q1

þ q1ðp0 − p1Þ
N

: ð9Þ

Several other anisotropic minisuperspaces such as the
Bianchi type I and III and Kantowski-Sachs models studied
in, e.g., Ref. [17] also turn out to be exactly soluble. Wewill
elaborate and exploit this feature elsewhere [18]. It goes
without saying that the exact solvability of these models is a
feature of the minisuperspace truncation. Furthermore, a
general truism about minisuperspace models is that the
fluctuation determinant accompanying the exponential
factor in a semiclassical approximation to a path integral
is not robust with respect to the inclusion of other degrees
of freedom. Going beyond minisuperspace could qualita-
tively alter the off-shell analysis of the path integral.
No-boundary wave function.—The original no-boundary

proposal was not born fully formed. Instead the intuitively
appealing path integral construction has been developed
and refined over many years. In the minisuperspace (2)–(3)
and in the gauge _N ¼ 0 the no-boundary wave functions
involve expressions of the following form [10,16],

ΨðyÞ ¼
X
M

Z
C
dN

Zxð1Þ¼y

B

DxαDΠαeiS½x;Π;N�=ℏ: ð10Þ

There is a family of wave functions implementing the no-
boundary idea but differing in the choice of four manifolds
M in the sum in Eq. (10), in the boundary conditions
BðMÞ at τ ¼ 0 on the lapse-dependent path integrals over x
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and Π, and in the contours CðMÞ for the ordinary integrals
over lapse values [19].
However, the obvious requirement that the integral in

Eq. (10) converges and that the resulting wave function fits
in a clear predictive framework for quantum cosmology,
including the condition it be normalizable under an
appropriate inner product (an example of such a normali-
zation condition is the induced inner product, reviewed,
e.g., in Refs. [20,21]), significantly limits the possible
choices M, B, and C [19,22]. We now specify these
features to define a NBWF which, we will show, obeys
these basic criteria and whose predictions agree in the
saddle point approximation with those of the original
Hartle-Hawking NBWF.
First, the relevant four manifolds in the no-boundary

proposal are those with a single boundary and which admit
everywhere regular “saddle point” solutions to the Einstein
equation. In the minisuperspace (1) these are the closed
four-ball B4, the complex projective plane with an open
four ball removed CP2nB4 and the cross-cap RP4nB4

[23,24]. The regular solutions on the first two manifolds
are (part of) the known Taub-NUT–de Sitter and Taub-
Bolt–de Sitter solutions, respectively. They are candidate
saddle points of the above path integral. Here we concen-

trate on the contribution of the B4 topology only.
Preliminary evidence indicates that including the other
topologies does not significantly change our results [18].
All regular Taub-NUT–de Sitter solutions are of the form

Eq. (1) with pðτÞ; qðτÞ ∼�2iNsτ as τ → 0, where Ns is
one of a number of values for the lapse which enforces the
Hamiltonian constraintH ¼ 0 on solutions to the equations
of motion. This behavior near the origin of the disk
corresponds to the following conditions on the minisuper-
space positions and momenta at τ ¼ 0: pð0Þ ¼ 0 ¼ qð0Þ,
Πpð0Þ ¼∓ i ¼ Πqð0Þ. In the quantum theory only certain
pairs of these classical conditions should be elevated to
boundary conditions B on the path integral (10) (excluding
those pairs in which both a position and its momentum are
fixed, which would be quantum-mechanically inconsis-
tent). Here we adopt the following boundary conditions:

B∶ pð0Þ ¼ 0; Πqð0Þ ¼ −i: ð11Þ

We will discuss alternative boundary conditions B in
Ref. [18] where we will argue that Eqs. (11) are essentially
the unique boundary conditions which yield a well-defined
and normalizable NBWF in Bianchi IX minisuperspace.
Note that the choice of sign for Πqð0Þ in (11) will turn out
to be crucial in obtaining a physically meaningful state.
Equation (8) shows that the propagator Kðp1; q1; N;

p0;Πq;0; 0Þ contains an N-dependent delta function con-
straint. Therefore the boundary conditions (11) are singular
at face value. To get around this problem, recall that we
obtained the propagator in this mixed representation by
Fourier transforming the position space propagator (6),

which generates the delta function in Eq. (8). To implement
the boundary conditions (11) we therefore perform a
Laplace transform (cf. Refs. [17,25]). That is, we convolve
the position space propagator (6) with expðiΠq;0q0=ℏÞ and
integrate q0 over a half-infinite line. This yields the
reciprocal of the argument of the delta function instead
of the delta function itself. In the resulting object, one can
show that the joint limit ðp0;Πq;0Þ → ð0;−iÞ with constant
ratio

ffiffiffiffiffi
p0

p
=ðΠq;0 þ iÞ is well defined. [The analytic struc-

ture of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 − N2

p
is important in this. We choose

limp0→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 − N2

p
¼ þiN. With the sign convention

used in Eq. (9), and in the limit ðp0;Πq;0Þ → ð0;−iÞ, this
choice renders the prefactor finite and the action equal to
the one of an instanton with boundary data (11) at τ ¼ 0
and ½pð1Þ; qð1Þ� ¼ ðp1; q1Þ at τ ¼ 1.] Taken together these
specifications define what we mean by the lapse-dependent
path integral in (10) in this model. We obtain

Zxð1Þ¼ðp;qÞ

B

DxαDΠαeiS½x;Π;N�=ℏ ∝
ffiffiffiffi
p

p
N2

eiS0=ℏ; ð12Þ

where S0 is given by Eq. (9), with p1 ¼ p, q1 ¼ q,
p0 ¼ 0, Πq;0 ¼ −i.
Even though Eq. (12) is not obviously a propagator in the

usual sense, it is nevertheless an exact solution to the
Schrödinger equation. (Indeed the Laplace transform is but
one particular example of a class of linear transformations
one can do on the initial data of a propagator that preserves
its quality of solving the Schrödinger equation.) Moreover,
it takes on a semiclassical form with the action given by a
regular instanton satisfying boundary data fitting to the
no-boundary proposal. From a practical viewpoint the
above manipulations simply serve to find an appropriate
prefactor to accompany the semiclassical exponential factor
specified by the no-boundary instanton. That is, a prefactor
that guarantees the Wheeler-DeWitt equation is eventually
satisfied.
Finally, we turn to the contour C for the lapse in Eq. (10),

for the topology M ¼ B4. We do not attribute much
fundamental physical meaning to a particular choice of
lapse contour in a given minisuperspace model, since
examples show that the result obtained from any given
choice can depend on the variables retained and even on the
parametrization of the metric [26]. Our contour choice is
guided instead by the physically motivated and broadly
applicable prescription given in Ref. [19] which, in this
particular model, is conveniently implemented by a closed
contour encircling the origin N ¼ 0. [Closed contours in
the context of the NBWF have been considered before
(see, e.g., Refs. [17,19,25,27])]. Together with infinite
contours they provide the only evident ways of generating
wave functions constructed as functional integrals.) Other
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contours will be considered in Ref. [18] and shown not to
yield physically reasonable results in this model.

With this all elements pertaining to the B4 contribution to
the NBWF are in place, and we get

Ψðp; q;B4Þ ¼ ffiffiffiffi
p

p I
dN

1

N2
exp

	
i
ℏ

�
−
iΛ
3
N2

þ
�
4 −

Λp
3

�
N þ iq −

pq
N

�

: ð13Þ

A closed contour C ensures the wave function (13) satisfies
the Wheeler-DeWitt equation exactly. Its semiclassical
behavior is specified by the regular Taub-NUT saddle

point solutions on B4 as we discuss further below.
Damped perturbations.—Using the residue theorem one

can express Eq. (13) as an infinite series. However, it is
illuminating to evaluate Eq. (13) in the semiclassical limit
and in the large three-volume regime where the wave
function describes an ensemble of classical histories. The
saddle points Ns of the exponent—the lapse values which
enforce the Hamiltonian constraint on the instantons—are
solutions of 2iΛN3

s=3þ ðΛp=3 − 4ÞN2
s − pq ¼ 0. One of

the three saddle points always lies on the positive imaginary
axis. From Eq. (13) it follows that the semiclassical
exponential factor associated with this saddle is purely
real. If the wave function were dominated by this saddle
point, it would not predict the Universe to behave classi-
cally at large volume [3]. Thus the contour should avoid
a contribution from this saddle on physical grounds [19].
In the region of superspace,

Λq >
ðΛpÞ2
81

�
12

Λp
− 1

�
3

; ð14Þ

the two other saddles are complex and located symmetri-
cally around the imaginary axis in the lower half part of the
lapse plane [15]. The closed contour C we have chosen can
be deformed into a sum of steepest descent contours which
pick up the two complex saddle points only. The corre-
sponding instantons belong to the Taub-NUT–de Sitter
family and have a complex nut parameter [18].
In the large volume regime p ≫ 1=Λ, with the ratio

p=q ¼ 1þ α finite, a straightforward calculation shows
that

ΨHHðp; α;B4Þ ∝
ffiffiffi
ℏ

p
Λ
�
1þ α

Λp

�
3=4

exp
�
6ð1þ 2αÞ
ℏΛð1þ αÞ2

�

× cos

�
6

ℏΛ
ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p
�
Λp
3

�
3=2

−
3π

4

�
ð15Þ

to leading order in 1=Λp. The asymptotic wave function
(15) satisfies the classicality conditions [3,4], j∇ReðiS̄0Þj=
j∇ImðiS̄0Þj ∼ ðΛpÞ−3=2 → 0 as Λp → ∞, where S̄0 ≡
S0ðNsÞ. This means it predicts an ensemble of classical

histories that are anisotropic deformations of asymptotic de
Sitter space. The classical asymptotic scale factors behave
as ΛpðtÞ ¼ ð1þ αÞt and ΛqðtÞ ¼ t. Therefore, the indi-
vidual histories can be labeled by the squashing α of their
future (conformal) boundary.
The wave function (15) specifies the leading order in ℏ

probabilities over histories. We show this in Fig. 1 as a
function of α. The relative probabilities are typical of the
Hartle-Hawking NBWF: the distribution is Gaussian
around the isotropic de Sitter space. [The semiclassical
exponent in Eq. (15) reduces to that of the NBWF in the
minisuperspace considered in Refs. [25,28,29] on the
isotropic p ¼ q slice. This agreement extends outside
the large volume regime [18] and includes the locations
of the two complex saddles in the N plane.] Large
anisotropies with q ≫ p have α close to −1 and are
exponentially suppressed. For large anisotropies q ≪ p,
i.e., large positive α, we also see exponential suppression.
For sufficiently large α the exponential suppression flattens
out, but we expect on general grounds that the exact
solution for the state is normalizable in the induced inner
product for all α [18].
Discussion.—We have shown there exists an implemen-

tation of the no-boundary idea expressed in terms of a
gravitational path integral in an anisotropic minisuperspace
model that yields a well-defined (normalizable) state in
which deviations from isotropy are damped. The no-
boundary proposal thus predicts that our Universe should
be isotropic with high probability.
The model we have studied—the biaxial Bianchi IX

minisuperspace—is a nonlinear completion of the minis-
uperspace spanned by a scale factor and the n ¼ 2
gravitational wave mode perturbation of de Sitter space
considered in Refs. [30,31]. In those papers it is claimed

FIG. 1. The leading order in ℏ probability distribution specified
by Eq. (15) over a one-parameter family of anisotropic defor-
mations of de Sitter space labeled by the squashing parameter α
of the future boundary. The NBWF predicts that small and large
fluctuations away from isotropy (α ¼ 0) are suppressed. The
values ℏ ¼ 1, Λ ¼ 3 were taken in Eq. (15) for this plot.
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that all no-boundary proposals are ill-defined due to
problems with large perturbations. Our work disproves
this claim. The discrepancy between our results and those
of Refs. [30,31] can be traced to two key features of the
off-shell analysis.
First, the analysis in Refs. [30,31] is plagued by the

breakdown of perturbation theory. This is because the
integrand of the integral over the lapse in Eq. (10) is
nonanalytic in perturbation theory. The authors of
Refs. [30,31] have included the off-shell contributions
to the path integral associated with this nonanalytic
structure. This led them to conclude that fluctuations
around isotropy are enhanced. However, it turns out
these contributions are an artifact of perturbation theory.
Working with a nonlinear completion of the theory we
have shown that the integrand of the lapse integral is
analytic everywhere, and hence that the above off-shell
contributions are absent.
Second, the authors of Refs. [30,31] implement the no-

boundary idea by imposing the initial boundary condition
that all variables go to zero both on shell and off shell. In a
path integral representation of the no-boundary proposal
this choice of boundary conditions gives rise to saddle point
contributions in which the Euclidean lapse NE is negative
for small geometries, thereby rendering the Euclidean
action for fluctuations ϕ about those saddle points negative.
This means the fluctuation wave functions are of the form
expðþϕ2Þ for small ϕ, in stark contrast to the expected
Bunch-Davies vacuum state wave functions and likely
rendering the state ill defined. This phenomenon was
previously noticed in Refs. [17,19].
We have instead implemented the no-boundary idea by

requiring the three volume to go to zero initially in
combination with a specific regularity condition on the
momentum of one of the variables. In particular we have
imposed Πqð0Þ ¼ −i. If we had adopted the initial con-
dition Πqð0Þ ¼ þi, the closed contour for the lapse would
have selected the “wrong sign” saddle points discussed in
Refs. [28,30,31], leading to an unphysical exponentially
growing behavior. With our choice of sign the wrong sign
saddle points are nowhere to be found, nor is any off-shell
structure relevant to the semiclassical wave function.
Instead, we recover the original Hartle-Hawking NBWF
which is normalizable and predicts that the amplitude of
large anisotropies is strongly suppressed. A similar con-
clusion holds for gravitational wave and scalar field
perturbations of de Sitter space with higher quantum
numbers [18].
More generally our results suggest that a more funda-

mental implementation of no-boundary initial conditions
in the isotropic minisuperspace model is not, as is tradi-
tionally done, to set the initial scale factor to zero, but
instead to impose a semiclassically equivalent regularity
condition on the momentum (as considered in Ref. [17]).
This also motivates more general investigations of the role

of momentum boundary conditions in the NBWF, both
initially and on the final boundary. (We thank E. Witten for
correspondence on this.)
Finally, we note that holography (or dS=CFT) postulates

an alternative formulation of the wave function not in terms
of a gravitational path integral but rather involving the
partition function of dual (Euclidean) field theories defined
directly on the final boundary [32–35]. Our results quali-
tatively agree with recent holographic calculations of the
NBWF in vector toy models defined on squashed three
spheres [35–37]. This suggests that holography implements
the specific no-boundary conditions that we made explicit
here. It would be interesting to understand this aspect of the
holographic dictionary in more detail.
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