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In systems described by the scattering theory, there is an upper bound, lower than Carnot, on the
efficiency of steady-state heat-to-work conversion at a given output power. We show that interacting
systems can overcome such bound and saturate, in the thermodynamic limit, the much more favorable
linear-response bound. This result is rooted in the possibility for interacting systems to achieve the Carnot
efficiency at the thermodynamic limit without delta-energy filtering, so that large efficiencies can be
obtained without greatly reducing power.
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Introduction.—The increasing energy demand and the
depletion and environmental impact of fossil fuels calls
for renewable and eco-friendly energy resources. In this
frame, nanoscale thermal engines [1–12] will play an
important role and might become part of the energetic
mix of the future. A crucial point is the efficiency of
such engines. Given any heat engine operating between
two reservoirs at temperature TL and TR (TL > TR), the
efficiency of energy conversion is upper bounded by the
Carnot efficiency ηC ¼ 1 − TR=TL. This limit can be
achieved for dissipationless heat engines. Such ideal
machines operate reversibly and infinitely slowly, and
therefore the extracted power vanishes in the Carnot limit.
For any practical purpose it is therefore crucial to
consider the power-efficiency trade-off, in order to design
devices that work at the maximum possible efficiency for
a given output power.
For steady-state conversion of heat to work in quantum

systems which can be modeled by the Landauer-Büttiker
scattering theory, this problem was solved theoretically
by Whitney [13,14]. Indeed, he found a bound on the
efficiency at a given output power P, which equals the
Carnot efficiency at P ¼ 0, and decays with increasing P.
This upper bound is achieved when only particles within a
given energy window (determined by the desired output
power P) of width δðPÞ can be transmitted through the
system. The Carnot efficiency is obtained for delta-energy
filtering [15–17], that is, when δ → 0, and in such limit the
output power vanishes. This interesting result establishes
a bound for an important class of systems. Now the relevant
question is, how general is this bound? For general

interacting systems, can this bound be overcome, thus
allowing for a better power-efficiency trade-off?
In this Letter, we give a positive answer to this question

for classical systems. Indeed, we show that interacting,
nonintegrable momentum-conserving systems overcome
the bound from the scattering theory. These systems can
achieve the Carnot efficiency at the thermodynamic limit,
with a much more favorable power-efficiency trade-off than
allowed by the scattering theory. Therefore, interactions
can significantly improve the performance of steady-state
heat-to-work conversion. This result is rooted in the
possibility, for interacting systems, to achieve the Carnot
efficiency without delta-energy filtering. Our results are
illustrated by means of extensive numerical simulations of
classical models of elastically colliding particles.
Classical reservoirs.—For concreteness, we consider a

one-dimensional system (even though, as discussed in the
Conclusions and shown in Sec. D of the Supplemental
Material [18], our analysis can be extended to higher
dimensions), whose ends are in contact with left and right
reservoirs, characterized by temperature Tα and electro-
chemical potentialμα (α ¼ L,R). The reservoirs aremodeled
as infinite one-dimensional ideal gases, with particle veloc-
ities described by the Maxwell-Boltzmann distribution,
FαðvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ð2πkBTαÞ

p
exp½−mv2=ð2kBTαÞ�, where kB is

the Boltzmann constant and m the mass of the particles. We
use a stochastic model of the reservoirs [19,20]: whenever a
particle of the system crosses the boundary which separates
the system from the left or right reservoir, it is removed. On
the other hand, particles are injected into the system from the
boundaries, with rates γα. The injection rate γα is computed
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by counting how many particles from reservoir α cross
the reservoir-system boundary per unit time: γα ¼
ρα
R
∞
0 dvvFαðvÞ ¼ ρα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTα=ð2πmÞp

, with ρα the particle
number density of the ideal gas in reservoir α. A standard
derivation [21] then shows that the density ρα is related to the
electrochemical potentialμα as follows:μα ¼ kBTα lnðραλαÞ,
where λα ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBTα

p
is the de Broglie thermal wave-

length and h the Planck constant.
Noninteracting systems.—In this case, the particle cur-

rent reads [21]

Jρ ¼ γL

Z
∞

0

dϵuLðϵÞT ðϵÞ − γR

Z
∞

0

dϵuRðϵÞT ðϵÞ; ð1Þ

where uαðϵÞ ¼ βαe−βαϵ, with βα ¼ ðkBTαÞ−1, is the energy
distribution of the particles injected from reservoir α and
T ðϵÞ is the transmission probability for a particle with
energy ϵ to transit from one end to another of the system,
0 ≤ T ðϵÞ ≤ 1. We can equivalently rewrite the particle
current in a form which can be seen as the classical
analogue to the Landauer-Büttiker approach:

Jρ ¼
1

h

Z
∞

0

dϵ½fLðϵÞ − fRðϵÞ�T ðϵÞ; ð2Þ

where fαðϵÞ ¼ e−βαðϵ−μαÞ is the Maxwell-Boltzmann dis-
tribution function. Similarly, we obtain the heat current
from reservoir α as

Jh;α ¼
1

h

Z
∞

0

dϵðϵ − μαÞ½fLðϵÞ − fRðϵÞ�T ðϵÞ: ð3Þ

To proceed we take the reference electrochemical poten-
tial to be that of reservoir L and set μL ¼ 0. Following the
same steps as done in Refs. [13,14] for the quantum case,
we find the transmission function that maximizes the
efficiency of the heat engine, ηðPÞ ¼ P=Jh;L, for a given
output power P ¼ ðΔμÞJρ, with Δμ ¼ μR − μL > 0 and
P; Jh;L > 0. It turns out that the optimal T is a boxcar
function, T ðϵÞ ¼ 1 for ϵ0 < ϵ < ϵ1 and T ðϵÞ ¼ 0 other-
wise. Here ϵ0 ¼ Δμ=ηC is obtained from the condition
fLðϵ0Þ ¼ fRðϵ0Þ and ϵ1 can be determined numerically by
solving the equation ϵ1 ¼ ΔμJ0h;L=P0, where the prime
indicates the derivative over Δμ for fixed T (this equation
is transcendental since Jh;L and P depend on ϵ1). The
maximum achievable power (according to scattering
theory) is obtained when ϵ1 → ∞:

PðstÞ
max ¼ A

π2

h
k2BðΔTÞ2; ð4Þ

where ΔT ¼ TL − TR and A ≈ 0.0373. Note that Δμ is
determined from the above optimization procedure; in

particular, at PðstÞ
max we obtain Δμ ¼ kBΔT. At small output

power, P=PðstÞ
max ≪ 1, the upper bound on efficiency

approaches the Carnot efficiency as follows:

ηðPÞ ≤ ηðstÞmaxðPÞ ¼ ηC

 
1 − B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR

TL

P

PðstÞ
max

s !
; ð5Þ

where B ≈ 0.493. In the limit ϵ1 → ϵ0, P → 0 and η → ηC.
In this case, we recover the well-known delta-energy filtering
mechanism to achieve the Carnot efficiency [15–17].
Namely, we recover the Carnot limit when transmission is
possible only inside an energy window of width δ ¼ ϵ1−
ϵ0 → 0. It is intuitive that selecting transmission over a tiny
energy window greatly reduces power production. It is
therefore natural to expect that a different mechanism to
reach Carnot efficiency might allow a larger power produc-
tion. Indeed, in what follows we show that for interacting,
momentum-conserving systems, where the Carnot efficiency
can be reached without delta-energy filtering (see Sec. C in
the Supplemental Material [18]), a greatly improved power-
efficiency trade-off can be obtained.
Momentum-conserving systems.—We consider a system

of elastically colliding particles, in contact with two
reservoirs tuned at different temperatures and electrochemi-
cal potentials in order to maintain a steady flow of particles
and heat. The equations connecting fluxes and thermody-
namic forces within linear response (an approximation that
we will show later to be valid for our model) are [22,23]

�
Jρ
Ju

�
¼
�
Lρρ Lρu

Luρ Luu

��−∇ðβμÞ
∇β

�
; ð6Þ

where Jρ is the steady particle current, Ju is the steady
energy current, and Lij (with i; j ¼ ρ, u) are the kinetic
(Onsager) coefficients. Hereafter we will discuss our results
in the language of thermoelectricity, even though they
could equally well refer to other steady-state heat-to-work
conversion phenomena like thermodiffusion. The Onsager
coefficients are then related to the familiar transport
coefficients as follows:

σ¼e2

T
Lρρ; κ¼ 1

T2

detL
Lρρ

; S¼ 1

eT

�
Lρu

Lρρ
−μ

�
: ð7Þ

Here σ is the electrical conductivity, κ is the thermal
conductivity, and S is the thermopower. Additionally, e
is the charge of the conducting particles, T ≈ TL ≈ TR and
μ ≈ μL ≈ μR in the linear response formulas, and detL
denotes the determinant of the (Onsager) matrix of kinetic
coefficients. Thermodynamics imposes detL ≥ 0, Lρρ ≥ 0,
Luu ≥ 0, and the Onsager reciprocity relations ensure (for
systems with time-reversal symmetry) that Luρ ¼ Lρu. The
maximum efficiency for energy conversion achievable by
the system is a monotonically growing function of the
thermoelectric figure of merit ZT [12]:
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ZT ¼ σS2

κ
T ¼ ðLuρ − μLρρÞ2

detL
: ð8Þ

Thermodynamics imposes ZT ≥ 0, with the efficiency
η ¼ 0 when ZT ¼ 0 and η → ηC when ZT → ∞.
Hereafter, we illustrate the breaking of bound Eq. (5)

by considering a one-dimensional, diatomic chain of hard-
point elastically colliding particles connected to reservoirs,
with masses mi ∈ fm;Mg and m ≠ M. (See Ref. [21] for
details of the model.) We have performed a nonequilibrium
calculation of the transport coefficients and then of the
figure of merit ZT (we have developed a method to
determine very accurately the transport coefficients; see
the Supplemental Material, Sec. B, for details [18]). In our
simulations, we set kB ¼ m ¼ e ¼ 1 and the system length
L to be equal to the mean number of particles N inside the
system. Our data shown in Fig. 1 as well as theoretical
arguments [24] show that the electrical conductivity σ ∝ N,
the thermal conductivity κ ∝ Nξ, with the power ξ ¼ 1=3
predicted by hydrodynamics approach [25,26], the thermo-
power is asymptotically size independent, and there-
fore ZT ∝ N1−ξ ¼ N2=3.
In Fig. 2, we show, for a given ΔT and different system

sizes, the relative efficiency η=ηC as a function of the
normalized power P=Pmax. Note that these curves have two
branches as they are obtained by changing Δμ from zero
(where P ¼ 0) up to the stopping value, where again
P ¼ 0, since the electrochemical potential difference
becomes too high to be overcome by the temperature
difference. In between, power first increases, up to
P ¼ Pmax, and then decreases, leading to a two-branch
curve. In the same figure, we also show the analytical result
from linear response [12]:

η

ηC
¼

P
Pmax

2
�
1þ 2

ZT ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − P

Pmax

q � ; ð9Þ

where the figure of merit ZT and Pmax ¼ S2σðΔTÞ2=ð4NÞ,
derived from Eqs. (6) and (7), have been computed
previously (see Fig. 1). In spite of the not so small value
of ΔT=T ¼ 0.2, there is a good agreement between the
results of our numerical simulations and the universal
linear response behavior given by Eq. (9). Moreover, such
agreement improves with increasing the system size, as
expected since j∇Tj ¼ ΔT=N decreases when N increases.
For any given ΔT, we expect the linear response to
correctly describe the transport properties of our model
for large enough system sizes. In Fig. 2, we also show the
parabolic curve corresponding to Eq. (9) for ZT ¼ ∞
(obtained in our model in the thermodynamic limit
N → ∞), whose upper branch is the universal linear
response upper bound to efficiency for a given power P.
The expansion of such a curve for P=Pmax ≪ 1 leads to

ηðPÞ ≤ ηlrðPÞ ¼ ηC

�
1 −

1

4

P
Pmax

�
; ð10Þ

which sets a much less restrictive bound for efficiency-
power trade-off than the bound Eq. (5) obtained above
for noninteracting systems. Our above reported numerical
results strongly suggest that the linear-response bound is
saturated by our model in the thermodynamic limit.
To illustrate the breaking of bound Eq. (5) for finite

system sizes, we compute the maximum efficiency ηmax
and the corresponding power PðηmaxÞ, for different system

FIG. 1. Electrical conductivity σ (a), thermopower S (b),
thermal conductivity κ (c), and figure of merit ZT (d) as a
function of the mean number N of particles inside the system, for
the one-dimensional, diatomic hard-point gas. Here and in the
other figures, the data are obtained forM ¼ 3, T ¼ 1, and μ ¼ 0.

FIG. 2. Relative efficiency η=ηC versus normalized power
P=Pmax for ΔT ¼ 0.2 (TL ¼ 1.1, TR ¼ 0.9) and different system
sizes. The dotted, dashed, and dot-dashed curves show the
expectation from linear response, Eq. (9), at the ZTðNÞ value
corresponding to the given system size N. The solid line is Eq. (9)
for ZT ¼ ∞, corresponding to N ¼ ∞ in our model. The upper
branch of this curve sets the linear-response upper bound on
efficiency for a given power.
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sizes. The obtained results, shown as black and white
circles in Fig. 3, are in agreement with the linear response
predictions, obtained from Eq. (9) at different values of
ZT (red circles). For ZT → ∞ (obtained when N → ∞),
ηmax → ηC and PðηmaxÞ → 0. In the limit of large ZT, from
Eq. (9) we obtain

ηmax ¼ ηC

�
1 −

1

2

PðηmaxÞ
Pmax

�
: ð11Þ

This power-efficiency trade-off when approaching the
Carnot efficiency is much more favorable than the bound
for noninteracting systems, also shown for comparison in
Fig. 3. To investigate the dependence of power and
efficiency on the interaction strength, we introduce a
parameter p as follows: When two particles meet, they
pass through each other with probability p, while they
collide elastically with probability 1 − p. For our original
hard-point model, p ¼ 0, while for the noninteracting case,
p ¼ 1. We can see in Fig. 3 that data at different values of p
stay on a single curve, as expected from linear response.
While for a given system size by decreasing interactions
(i.e., by increasing p) we reduce ZT and therefore
deteriorate the performance of energy conversion, ZT still
grows with the system size. In short, the larger p, the larger
the system size is required to have a given number of
collisions per particle crossing the system. Only in the

noninteracting case we obtain ZT ¼ 1 (η=ηC ≈ 0.17) for all
system sizes [24].
Conclusions and discussion.—In this Letter, we have

shown that classical interacting systems allow, for a given
power, a much higher efficiency than the one achievable in
the noninteracting case. This result shows that interactions
can significantly improve the performance of heat-to-work
conversion. Our results are based on the fact that for
momentum-conserving systems the Carnot efficiency can
be achieved at the thermodynamic limit without delta-
energy filtering. While we have considered for illustrative
purposes a one-dimensional, diatomic disordered chain of
hard-point elastically colliding particles, our theoretical
considerations can be as well extended to other momentum-
conserving systems, also of higher dimensions [27,28].
In the noninteracting case, for d-dimensional systems
connected to reservoirs via openings of linear size lα,
the injection rate of particles from reservoir α to the system
is proportional to ðlα=λαÞd−1, and therefore the maximum
power scales linearly with this quantity, which plays the
role of the number of transverse modes in a classical
context. The corresponding noninteracting bound on
efficiency at a given power is broken by momentum-
conserving systems, as shown in the Supplemental
Material, Sec. D [18], for the two-dimensional multiparticle
collision model [29]. Finally, we have also considered
refrigeration (see again the Supplemental Material, Sec. E
[18]) and shown that, thanks to interactions, one can greatly
exceed the bound on efficiency for a given cooling power
which applies to systems described by the scattering theory.
While we conjecture that our results also apply in the
quantum case for systems with momentum conservation,
such extension remains as a challenging task for future
investigations.
Besides their fundamental interest, our findings for

momentum-conserving systems could be of practical rel-
evance in situations where the elastic mean free path of
the conducting particles is much longer than the length
scale over which interactions are effective in exchanging
momenta between the particles, as it might happen in high-
mobility two-dimensional electron gases at low temper-
atures. Moreover, our results might find applications in the
context of cold atoms, where a thermoelectric heat engine
has already been demonstrated for weakly interacting
particles [30]. More recent experimental results on coupled
particle and heat transport through a quantum point contact
connecting two reservoirs of interacting Fermi gases have
shown a strong violation of the Wiedemann-Franz law
which could not be explained by the Landauer-Büttiker
scattering theory [31]. It can be envisaged that in such
systems, which can be considered as thermoelectric devices
with high efficiency [31], the noninteracting bound on
efficiency for a given (cooling) power could be outper-
formed, with possible applications to the refrigeration of
atomic gases.

FIG. 3. Maximum efficiency ηmax versus the corresponding
power PðηmaxÞ, from linear response with the values of ZT
obtained numerically (red circles) and directly from numerical
computation of power and efficiency (black and white circles)
for various system sizes with TL ¼ 1.1 and TR ¼ 0.9. The dot-
dashed line is for the analytical expectation from linear response
at large ZT, Eq. (11). We also show the bound for classical
noninteracting systems (solid line) and its approximation at the
low power limit given by Eq. (5) (dashed line) as a comparison.
Data from the stochastic model described in the text, with p
crossing probability each time two particles meet, are also
reported (for further details on this model, see Sec. A in the
Supplemental Material [18]).
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