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Adiabatically varying the driving frequency of a periodically driven many-body quantum system can
induce controlled transitions between resonant eigenstates of the time-averaged Hamiltonian, correspond-
ing to adiabatic transitions in the Floquet spectrum and presenting a general tool in quantum many-body
control. Using the central spin model as an application, we show how such controlled driving processes
can lead to a polarization-based decoupling of the central spin from its decoherence-inducing environment
at resonance. While it is generally impossible to obtain the exact Floquet Hamiltonian in driven interacting
systems, we exploit the integrability of the central spin model to show how techniques from quantum
quenches can be used to explicitly construct the Floquet Hamiltonian in a restricted many-body basis and
model Floquet resonances.
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Introduction.—Periodically driven systems have a rich
history ranging from the simple kicked rotor to recent
experimental progress on cold atoms in optical fields [1,2].
The dynamics in driven systems has remarkable features,
such as the absence of a well-defined adiabatic limit [3,4]
and the heating to an infinite temperature which is expected
to occur [5–9]. The same physical mechanism underlies
these phenomena—in the presence of periodic driving, it is
possible for states to interact resonantly. States whose
energies are separated by an integer multiple of the driving
frequency will interact strongly, leading to Floquet or many-
body resonances [10–12].
While this is generally seen as a disadvantage because of

the experimental problems posed by heating, there is hope
that in large but finite systems such many-body resonances
can be well understood and even controlled. This opens up
ways of engineering specific many-body resonant quantum
states by adiabatically tuning the driving frequency to
resonance. Such “driven driving” protocols, if smartly
conceived, could even lead to states with properties beyond
these associated with the (physical) driving Hamiltonians
[13–18]. This is illustrated on the central spin model, which
is adiabatically driven such that the central spin becomes
completely decoupled from its environment, incompatible
with the physics of the instantaneous Hamiltonians. This
model describes the (inhomogeneous) interaction of a
central spin on which a magnetic field is applied with
an environment of surrounding spins, being important in
the study of quantum dots, solid-state nuclear magnetic
resonance, and the nitrogen-vacancy defect in diamond, a
promising qubit system [19]. A major experimental chal-
lenge remains the decoherence due to the presence of

an environment, motivating numerous studies [20–30].
Surprisingly, Floquet resonances can here be used to con-
struct pure spin states, seemingly at odds with the inevitable
interaction with the environment and resulting decoherence
effects.
All such resonances are encoded in the spectrum of

the Floquet Hamiltonian, governing periodic dynamics.
However, due to the exponential scaling of the Hilbert
space and the inherently nondiagonal nature of time
evolution operators, it is generally impossible to obtain
this Hamiltonian in realistically sized interacting systems.
In the present Letter, we exploit that the system is driven
by periodically switching between integrable Hamiltonians
[31,32], and we show how techniques from quantum
quenches in integrability can be adapted to accurately
model such transitions by constructing a (numerically)
exact Floquet Hamiltonian in a restricted Hilbert space
spanned by the resonant (Bethe ansatz) eigenstates of the
integrable time-averaged Hamiltonian. This also presents a
first step toward applying the toolbox from integrability to
driven systems, where integrability is generally expected to
lose its usefulness because of the general nonintegrability
of the Floquet Hamiltonian [33–35].
Floquet theory.—The key result in the study of periodi-

cally driven systems is the Floquet theorem [36], recasting
the unitary evolution operator as

UðtÞ ¼ PðtÞe−iHFt; ð1Þ

with PðtÞ a periodic unitary operator with the same period
T as the driving, satisfying PðTÞ ¼ 1, and HF the Floquet
Hamiltonian (with ℏ ¼ 1). Considering time evolution over
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one full cycle leads to the Floquet operator, from whichHF
can be extracted as

UF ≡UðTÞ ¼ e−iHFT: ð2Þ

Simultaneously diagonalizing these operators leads to

HF ¼
X
n

ϵnjϕnihϕnj; UF ¼
X
n

e−iθn jϕnihϕnj; ð3Þ

with quasienergies ϵn ¼ θn=T. These provide the Floquet
equivalent of quasimomenta in Bloch theory, similarly
defined only up to shifts k × 2π=T, k ∈ N, and quasiener-
gies separated by shifts k × 2π=T, k ∈ N, are said to be
quasidegenerate. Crucially, the Floquet Hamiltonian itself
also depends on the driving period T. Consider a periodic
quenching driving protocol

HðtÞ ¼
�
H1 for 0 < t < ηT;

H2 for ηT < t < T;
ð4Þ

with Hðtþ TÞ ¼ HðtÞ and η ∈ ½0; 1�, leading to

UF ≡ e−iHFT ¼ e−ið1−ηÞTH2e−iηTH1 : ð5Þ

Obtaining the Floquet Hamiltonian from this expression is
a nontrivial task, with exact results limited to systems
where there is a clear commutator structure in all involved
Hamiltonians [37] (e.g., noninteracting systems [38–40])
or small systems for which exact diagonalization is
feasible [41].
Still, the dependence of the Floquet Hamiltonian on the

driving frequency has become well understood in recent
years [4,5,12]. At high driving frequencies, the Floquet
Hamiltonian can be accurately approximated by an effec-
tive Hamiltonian, leading to strongly suppressed heating
[42–45]. This effective Hamiltonian can be obtained
from the Magnus expansion, where the time-averaged
HamiltonianHav ¼ ηH1 þ ð1 − ηÞH2 presents a first-order
approximation [46–49]. Lowering the driving frequency
2π=T, many-body resonances are introduced where quasi-
degenerate eigenstates of this effectiveHamiltonian interact
strongly and hybridize [4,5,12]. Further lowering the
driving frequency, these many-body resonances multiply
and lead to so-called “infinite-temperature states.” Here, it
is crucial to consider finite systems with a bounded
spectrum, since the unbounded spectrum in infinitely large
systems immediately leads to a proliferation of many-body
resonances and “infinite-temperature” Floquet eigenstates
at all possible driving frequencies. However, by tuning the
driving frequency in finite systems, it remains possible to
target specific resonances of nontrivial states, as will be
illustrated.

The central spin model.—The model Hamiltonian is

H ¼ BzS
z
0 þ

XL
j¼1

AjS⃗0 · S⃗j; ð6Þ

with Sα0 and S
α
j the spin operators of the central spin and the

environment, respectively. These are taken to be spin-1=2
particles, and the coupling constants are commonly chosen
as Aj ¼ exp ½−ðj − 1Þ=L�, corresponding to a quantum dot
in a 2D Gaussian envelope [50]. However, the integrability
of the central spin model is versatile enough that our
proposed method holds for arbitrary spins and parametri-
zations. For consistency with the literature on integrability,
we set ϵj ¼ −A−1

j and ϵ0 ¼ 0. The exact Bethe ansatz
eigenstates

jBz; v1;…; vNi ¼
YN
a¼1

�XL
j¼0

Sþj
ϵj − va

�
j↓ � � �↓i ð7Þ

depend on variables fv1;…; vNg satisfying Bethe equations

B−1
z þ1

2

XL
j¼0

1

ϵj−va
¼
XN
b≠a

1

vb−va
∀ a¼ 1;…;N; ð8Þ

leading to energies

EðBz; fv1;…; vNgÞ ¼
1

2

XN
a¼1

v−1a −
1

4

XL
j¼1

Aj −
1

2
Bz: ð9Þ

Integrability now has two major advantages. First, these
equations can be efficiently solved in a time scaling poly-
nomiallywith the system size. This should be contrastedwith
the conventional diagonalization of the Hamiltonian matrix
in an exponentially large Hilbert space, allowing for exact
results for large system sizes. Second, it allows for the
systematic targeting of eigenstates through the Bethe
equations. The key to our proposed approach is that over-
laps hBz;1; v1;…; vN jBz;2;w1;…; wNi between eigenstates
of central spin Hamiltonians with different magnetic
fields Bz;1 ≠ Bz;2 can also be efficiently calculated numeri-
cally [51].
Returning to Floquet dynamics, a protocol is considered

where Bz is periodically switched between values Bz;1 and
Bz;2. To fix ideas, the eigenphases of the Floquet operator
have been given in Fig. 1 for different driving periods T,
with total spin projection 0, η ¼ 0.5, and Bz switched
between 1.2 and 0.8. These calculations have been per-
formed using exact diagonalization on a small system with
L ¼ 5 in order to avoid a visual clutter of eigenstates but
are representative for larger system sizes. Next to the
spectrum of the Floquet operator, two energy measures of
a Floquet state jϕni are
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θn
T

¼ hϕnjHFjϕni;
∂θn
∂T ¼ hϕnjHavjϕni; ð10Þ

with θn=T the quasienergies and ∂Tθn the dynamical
contribution to the quasienergies [34,63]. This second
quantity is convenient for the visualization of avoided
crossings in the spectrum of the Floquet Hamiltonian.
At small driving periods, the spectrum of HF reduces to

that of Hav and both energies coincide. The onset of many-
body resonances can be observed at Tc ¼ 2π=W, with
W ¼ Eav

max − Eav
min the bandwidth of Hav. At this critical

frequency, the energy difference between the ground state
and the highest excited state exactly matches the driving
frequency. These states are then quasidegenerate and
interact resonantly, which can be clearly observed in the
avoided crossing between their respective quasienergies in
hHFi [64] and the crossing between their respective
energies in hHavi. Further increasing the driving period,
more and more resonances are introduced. Remarkably, the
off-resonant parts of the spectrum can often be accurately
approximated using Hav [12,65].
Resonant transitions.—Resonances have a major influ-

ence on the concept of adiabaticity, with distinct effects on
the eigenstates of the Floquet Hamiltonian and the time-
averaged Hamiltonian [65–70]. Starting from an eigenstate
of the Floquet Hamiltonian and adiabatically changing the
driving frequency [71], the initial state will adiabatically

follow the eigenstate of the Floquet Hamiltonian. Across
resonance, this would result in a transition from, e.g.,
the ground state to a highly excited state of the time-
averaged Hamiltonian, since the eigenstates of the Floquet
Hamiltonian adiabatically connect these states.
Focusing on the ground and highest excited state and

adiabatically increasing the driving period across resonance,
starting from the ground state of Hav leads to

UðTnÞ…UðT2ÞUðT1Þjϕ0ðB̄zÞi; ð11Þ

with T slowly increased from T1 to Tn and B̄z ¼ ηBz;1 þ
ð1 − ηÞBz;2. We will refer to this state as the “adiabatic
ground state,” which is expected to adiabatically follow the
corresponding eigenstate of theFloquetHamiltonian through
the frequency sweep, leading to transitions between resonant
states. For the small system with L ¼ 5, such transitions are
shown in Fig. 2 for the first- ðT ≈ TcÞ and second-order
(T ≈ 2Tc) resonance. Slowly increasing the driving period,
the system ends up in the highest excited state of Hav in the
second resonance, while it undergoes another resonance in
the first transition before the highest excited state can be
reached. Since the initial state is not an exact eigenstate ofHF
but only a (good) approximation, oscillations are introduced
in all expectation values corresponding to contributions from
excited eigenstates ofHF to jϕ0ðB̄zÞi (see the inset in Fig. 2).
These arise from higher-order contributions to the Magnus
expansion and are as such controllable (e.g., by decreasing
jBz;2 − Bz;1j). Still, it is clear that the ground state adiabati-
cally follows the eigenstates of the Floquet Hamiltonian if

FIG. 1. Phase spectrum of the Floquet operator, quasienergies,
and dynamical energies for a periodically driven central spin
Hamiltonian at different driving periods T. The dotted (blue) lines
mark the edges of the Brillouin zone �πðθnÞ and �π=T ðθn=TÞ,
while the vertical dotted line denotes Tc ¼ 2π=W. The ground
state and highest excited state are highlighted red using the
approximative results from integrability (see below).

FIG. 2. Expectation values of Hav and Sz0 with respect to
the adiabatic ground state of the Floquet Hamiltonian when
the driving period is slowly increased from 0.8Tc to 1.2Tc (first
column) or from 1.8Tc to 2.2Tc (second column) with
Tiþ1 − Ti ¼ 10−4. Blue lines are exact results, while the red line
is the approximation from integrability (see below). The dashed
lines indicate the spectrum of Hav.
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the driving period is varied adiabatically. In order to have a
clear transition between two states, it is important that the
resonance is isolated, where only a single state is quaside-
generate with the ground state. For the ground and highest
excited state, the first and second resonances are guaranteed
to be isolated because of the two-band nature and the low
density of states at the edge of the spectrum (see Fig. 1). Note
how hSz0i, as shown in the lower panel in Fig. 2, vanishes at
the first resonance and nears its maximal value of 1=2 in the
second resonance.
Modeling the resonant transition.—In general, such

calculations require constructing the evolution operators
for both driving Hamiltonians at each value of the driving
period and constructing and subsequently diagonalizing
the Floquet operator. Each step involves the full Hilbert
space, making such calculations unfeasible for realistic
system sizes. However, knowledge acquired from quantum
quenches (see, e.g., [72] and references therein) can be
transferred to the present situation under the following key
assumption. Namely, we assume that each many-body
resonance can be modeled as a two-level system including
only the corresponding quasidegenerate eigenstates of Hav.
This assumes that quasidegenerate states do not interact
strongly with off-resonant states or other quasidegenerate
states with a different quasienergy, similar in spirit to
degenerate perturbation theory. This approximation can be
validated through the Floquet-Magnus expansion and is
expected to hold if the deviations of the drivingHamiltonians
are small with respect to the time-averaged Hamiltonian
[43,47–49]. The Floquet operator can then be constructed
in the two-dimensional basis fjϕ0ðB̄zÞi; jϕfðB̄zÞig spanned
by the relevant quasidegenerate eigenstates of the time-
averaged Hamiltonian

UF ¼
"
hϕ0ðB̄zÞjUFjϕ0ðB̄zÞi hϕ0ðB̄zÞjUFjϕfðB̄zÞi
hϕfðB̄zÞjUFjϕ0ðB̄zÞi hϕfðB̄zÞjUFjϕfðB̄zÞi

#
:

ð12Þ
Explicitly writing out the Floquet operator (12) and

expanding in the eigenstates of the driving Hamiltonians,
each matrix element is given by

hϕiðB̄zÞjUFjϕjðB̄zÞi ¼
X
m;n

e−ið1−ηÞEmðBz;2ÞTe−iηEnðBz;1ÞT

× hϕiðB̄zÞjϕmðBz;2Þi
× hϕmðBz;2ÞjϕnðBz;1Þi
× hϕnðBz;1ÞjϕjðB̄zÞi: ð13Þ

The calculation of each matrix element generally involves a
double summation over the Hilbert space of energies and
overlaps, which in turn involve summations over the
Hilbert space. Integrability already provides numerically
efficient expressions for the energies and the overlaps. As
noticed in quantum quenches, another important feature of

Bethe states is that they offer a basis in which only a very
small minority of eigenstates carry a substantial correlation
weight, allowing summations over the full Hilbert space to
be drastically truncated [52,53]. Such a truncation scheme
is presented in Supplemental Material [51], and the induced
error can be checked from sum rules. In practice, this
allows for a numerically exact construction of the matrix
elements (13) for relatively large systems. The resulting
2 × 2 operator can be easily diagonalized, and integrability
allows for an efficient calculation of expectation values
from its eigenstates [54–59]. So the main approximation
in this scheme is the restriction of the Hilbert space to a
two-dimensional space, but within this space the Floquet
operator is numerically exact. While we focus on the
interaction between the ground and the highest excited
state only, this makes it possible to systematically recon-
struct part of the Floquet spectrum by including an
increasing number of states in this basis. The accuracy
can already be appreciated from Figs. 1 and 2, where the
avoided crossings near the resonances are well approxi-
mated but do not take into account the resonances involving
other states. The results are extended in Figs. 3 and 4 to

FIG. 3. Expectation value of the time-averaged Hamiltonian in
the adiabatic ground state of the Floquet Hamiltonian with
driving Bz ¼ 1� 0.2 and η ¼ 1=2 for different system sizes L.

FIG. 4. Magnetization of the central spin in the adiabatic
ground state of the Floquet Hamiltonian at different driving
periods with L ¼ 25 and driving Bz ¼ B̄z � 0.2.
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different system sizes and average magnetic fields. The
period beyond which the two-level approximation fails
because another state needs to be included can also be
estimated [51] and is marked in both figures. Note that this
period lies outside the figure for the second-order resonance.
Discussion.—While the expectation value of Hav varies

smoothly from the initial to the final value, the behavior
of the central spin is highly dependent on the order of the
resonance. The magnetization hSz0i vanishes at the first
resonance, while it nears the maximal value 1=2 at the
second resonance. Such a protocol could then be used
to realize a state with magnetization exceeding that of
both states, incompatible with any stationary central spin
Hamiltonian, since a maximal value of 1=2 implies a pure
state decoupled from its environment.
A simple way to understand this behavior follows from

the structure of the ground and the highest excited state,
where the environment spins tend to align either antiparallel
or parallel to the central spin. These can be approximated
by treating the environment as a single collective spin, and
in this space the Hamiltonian simplifies to

H ≈ B̄zS
z
0 þ AbS⃗b · S⃗0: ð14Þ

Although not a necessary assumption [51], some intuition
can be gained by taking jB̄zj ≪ jAbSbj, where the relevant
eigenstates can be approximated as

jϕ�i ≈
1ffiffiffi
2

p
�����12 ; 12

�
0

����Sb;− 1

2

�
b
�
����12 ;− 1

2

�
0

����Sb; 12
�

b

�
:

ð15Þ

At resonance, the Floquet states are approximately given by
jϕi ¼ ð1= ffiffiffi

2
p Þðjϕþi � eiθjϕ−iÞ, where the relative phase θ

is a priori unknown. However, the magnetization of the
central spin depends on this relative phase as hϕjSz0jϕi ¼
1
2
cosðθÞ. The different magnetizations hence correspond

to different relative phases acquired by these states. This
relative phase can be deduced from second-order pertur-
bation theory, expanding the matrix elements of the Floquet
operator (13) at resonance for small deviations from the
average magnetic field ðBz − B̄zÞ [51]. Evolving either state
over a full driving cycle will lead to a global phase and
introduce off-diagonal corrections on the initial state, which
are shown to interfere either constructively or destructively,
depending on the order of the resonance. This is reflected in
the dependence of the off-diagonal elements on the order of
the resonance k through terms e�iηk2π , and perturbation
theory leads to relative phases π=2 and 3π=2 in the first
resonance, while it leads to relative phases 0 and π in the
second resonance. These explain the observed magnetiza-
tion hSz0i ¼ 0 or �1=2 and the decoupling of the central
spin. This behavior extends towards higher-order resonan-
ces, where the polarization occurs at even-order resonances

but vanishes at odd-order resonances. However, there is no
guarantee that such resonances will be isolated and hence
observable.
Conclusion.—In this work, we investigated adiabatic

transitions in the Floquet Hamiltonian when varying the
driving frequency, leading to a transition between the
ground and highest excited state away from resonance.
Applying a periodically varying magnetic field to a central
spin model, it was shown how frequency sweeps and
Floquet resonances can be used to prepare the system in a
coherent superposition of the targeted states, leading to
either a vanishing magnetization or a spin state exactly
aligned with the magnetic field, depending on the order of
the resonance. The latter effectively leads to a decoupling
of the central spin from its environment, which can be used
to purify the central spin. Integrability-based techniques
were shown to be able to model this transition, which
allows for an investigation of larger system sizes and
presents a first step in applying techniques from integra-
bility to interacting integrable systems subjected to periodic
driving.
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