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To estimate the time, many organisms, ranging from cyanobacteria to animals, employ a circadian clock
which is based on a limit-cycle oscillator that can tick autonomously with a nearly 24 h period. Yet, a limit-
cycle oscillator is not essential for knowing the time, as exemplified by bacteria that possess an “hourglass”: a
system that when forced by an oscillatory light input exhibits robust oscillations fromwhich the organism can
infer the time, but that in the absence of driving relaxes to a stable fixed point. Here, using models of the Kai
system of cyanobacteria, we compare a limit-cycle oscillator with two hourglass models, one that without
driving relaxes exponentially and one that does so in an oscillatory fashion. In the limit of low input noise, all
three systems are equally informative on time, yet in the regime of high input-noise the limit-cycle oscillator is
far superior. The same behavior is found in the Stuart-Landau model, indicating that our result is universal.
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Many organisms, ranging from animals, plants, insects, to
even bacteria, possess a circadian clock, which is a bio-
chemical oscillator that can tick autonomously with a nearly
24 h period. Competition experiments on cyanobacteria have
demonstrated that these clocks can confer a fitness benefit to
organisms that live in a rhythmic environment with a 24 h
period [1,2]. Clocks enable organisms to estimate the time of
day, allowing them to anticipate, rather than respond to, the
daily changes in the environment. While it is clear that
circadian clocks which are entrained to their environment
make it possible to estimate the time, it is far less obvious that
they are the only or best means to do so [3,4]. The oscillatory
environmental input could, for example, also be used to drive
a systemwhich in the absence of any drivingwould relax to a
stable fixedpoint rather than exhibit a limit cycle. Thedriving
would then generate oscillations from which the organism
could infer the time. It thus remains an open question what
the benefits of circadian clocks are in estimating the time
of day.
This question is highlighted by the timekeeping mech-

anisms of prokaryotes. While circadian clocks are ubiqui-
tous in eukaryotes, the only known prokaryotes to possess
circadian clocks are cyanobacteria, which exhibit photo-
synthesis. The best characterized clock is that of the
cyanobacterium Synechococcus elongatus, which consists
of three proteins, KaiA, KaiB, and KaiC [5]. The central
clock component is KaiC, which forms a hexamer that is
phosphorylated and dephosphorylated in a cyclical fashion
under the influence of KaiA and KaiB. This phosphoryla-
tion cycle can be reconstituted in the test tube, forming a
bona fide circadian clock that ticks autonomously in the
absence of any oscillatory driving with a period of nearly
24 h [6]. However, S. elongatus is not the only cyano-
bacterial species. Prochlorococcus marinus possesses kaiB

and kaiC, but lacks (functional) KaiA. Interestingly, this
species exhibits daily rhythms in gene expression under
light-dark (LD) cycles but not in constant conditions [7,8].
Recently, Johnson and co-workers made similar observa-
tions for the purple bacterium Rhodopseudomonas palust-
ris, which harbors homologs of KaiB and KaiC. Its growth
rate depends on the KaiC homolog in LD but not constant
conditions [4], suggesting that the bacterium uses its Kai
system to keep time. Moreover, this species too does not
exhibit sustained rhythms in constant conditions, but does
show daily rhythms in, e.g., nitrogen fixation in cyclic
conditions. P. marinus and R. palustris thus appear to keep
time via an “hourglass” mechanism that relies on oscil-
latory driving [4,7,8]. These observations raise the question
of why some bacterial species like S. elongatus have
evolved a bona fide clock that can run freely, while others
have evolved an hourglass timekeeping system.
Troein et al. studied the evolution of timekeeping systems

in silico [9]. They found that only in the presence of seasonal
variations and stochastic fluctuations in the input signal did
systems evolve that can also oscillate autonomously.
However, organisms near the equator have evolved self-
sustained oscillations [4], showing that seasonal variations
cannot be essential. Pfeuty et al. suggest that limit-cycle
oscillators have evolved because they enable timekeepers
that ignore the uninformative light-intensity fluctuations
during the day (corresponding to a dead zone in the
phase-response curve), yet selectively respond to the more
informative intensity changes around dawn and dusk [10].
Here, we hypothesize that the optimal design of the

readout system that maximizes the reliability by which cells
can estimate the time depends on the noise in the input
signal. To test this idea, we study three different network
designs from which the cell can infer time (Fig. 1). (i) A

PHYSICAL REVIEW LETTERS 121, 078101 (2018)

0031-9007=18=121(7)=078101(6) 078101-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.078101&domain=pdf&date_stamp=2018-08-14
https://doi.org/10.1103/PhysRevLett.121.078101
https://doi.org/10.1103/PhysRevLett.121.078101
https://doi.org/10.1103/PhysRevLett.121.078101
https://doi.org/10.1103/PhysRevLett.121.078101


simple push-pull network (PPN), in which a readout protein
switches between a phosphorylated and an unphosphory-
lated state [Fig. 1(a)]. Because the phosphorylation rate
increases with the light intensity, the phosphorylation level
oscillates in the presence of oscillatory driving, enabling
the cell to estimate the time. This network lacks an intrinsic
oscillation frequency, and in the absence of driving it
relaxes to a stable fixed point in an exponential fashion.
(ii) An uncoupled hexamer model (UHM), which is
inspired by the Kai system of P. marinus [Fig. 1(b)].
This model consists of KaiC hexamers which each have an
inherent propensity to proceed through a phosphorylation
cycle. However, the phosphorylation cycles of the hexam-
ers are not coupled among each other, and without a
common forcing the cycles will therefore desynchronize,
leading to the loss of macroscopic oscillations. In contrast
to the proteins of the PPN, each hexamer is a tiny oscillator
with an intrinsic frequency ω0, which means that an
ensemble of hexamers that has been synchronized initially,
will, in the absence of driving, relax to its fixed point in an
oscillatory manner. (iii) A coupled hexamer model (CHM),

which is inspired by the Kai system of S. elongatus
[Fig. 1(c)]. As in the previous UHM, each KaiC hexamer
has an intrinsic capacity to proceed through a phospho-
rylation cycle, but, in contrast to that system, the cycles of
the hexamers are coupled and synchronized via KaiA, as
described further below. Consequently, this system exhibits
a limit cycle, yielding macroscopic oscillations with intrin-
sic frequency ω0 even in the absence of any driving.
Here we are interested in the question how the precision

of time estimation is limited by the noise in the input signal,
and how this limit depends on the architecture of the
readout system. We thus focus on the regime in which the
input noise dominates over the internal noise [13] and
model the different systems using mean-field (determinis-
tic) chemical rate equations. In Ref. [14], we also consider
internal noise, and show that, at least for S. elongatus, the
input-noise dominated regime is the relevant limit.
The chemical rate equation of the PPN is _xp ¼

kfsðtÞ½xT − xpðtÞ� − kbxpðtÞ, where xpðtÞ is the concentra-
tion of phosphorylated protein, xT is the total concentration,
kfsðtÞ is the phosphorylation rate kf times the input signal

(a) (b) (c)

FIG. 1. Overview of different timekeeping systems. (a) A push-pull network (PPN). Each protein can switch between a
phosphorylated and an unphosphorylated state, and the input signal enhances the phosphorylation rate. In the absence of driving,
the PPN relaxes exponentially to a steady state (middle panel). Yet, in the presence of an oscillatory input, e.g., sunlight, the system
exhibits oscillations from which the time can be inferred (lower panel). (b) The uncoupled-hexamer model (UHM), inspired by the Kai
system of P. marinus. It consists of KaiC hexamers which can switch between an active state in which the phosphorylation level tends to
rise and an inactive one in which it tends to fall. The phosphorylation rate is, via changes in the ATP/ADP ratio, enhanced by the light
input [11,12]. The system is akin to a harmonic oscillator, with an intrinsic frequency ω0, resulting from the hexamer phosphorylation
cycle. However, the hexamers are not coupled via KaiA as in the CHM shown in panel (c), so it cannot sustain autonomous oscillations;
in the absence of driving, it relaxes in an oscillatory fashion to a stable fixed point (middle panel). (c) The coupled-hexamer model
(CHM), inspired by the Kai system of S. elongatus. Like the UHM, it consists of KaiC hexamers, which tend to be phosphorylated
cyclically. However, in contrast to the UHM, the hexamers are synchronized via KaiA, such that the system can exhibit limit-cycle
oscillations in the absence of driving (middle panel). In all models, time is estimated from the protein phosphorylation fraction pðtÞ.
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sðtÞ, and kb is the dephosphorylation rate. The uncoupled
(UHM) and coupled (CHM) hexamermodel are based on the
Kai system [32–39]. In bothmodels, KaiC switches between
an active conformation in which the phosphorylation level
tends to rise and an inactive one in which it tends to fall
[32,37]. Experiments indicate that the main Zeitgeber is the
ATP/ADP ratio [11,12], meaning the clock predominantly
couples to the input sðtÞ during the phosphorylation phase of
the oscillations [11,39]. In both the UHM and the CHM, sðtÞ
therefore modulates the phosphorylation rate of active KaiC.
The principal difference between the UHM and CHM is
KaiA: (functional) KaiA is absent inP.marinus and hence in
the UHM [7,8]. In contrast, in S. elongatus and hence the
CHM, KaiA phosphorylates active KaiC, yet inactive KaiC
can bind and sequester KaiA. This gives rise to the synchro-
nization mechanism of differential affinity [14,32,33]. In all
threemodels, the input is modeled as a sinusoidal signal with
mean s̄ and driving frequency ω ¼ 2π=T plus additive noise
ηsðtÞ: sðtÞ ¼ sinðωtÞ þ s̄þ ηsðtÞ. The noise is uncorrelated
with themean signal, andhas strengthσ2s and correlation time
τc, hηsðtÞηsðt0Þi ¼ σ2se−jt−t

0j=τc . A detailed description of the
models is given in the Supplemental Material [14].
As a performance measure for the accuracy of estimating

time, we use the mutual information Iðp; tÞ between the
time t and the phosphorylation level pðtÞ [13,40]:

Iðp; tÞ ¼
Z

T

0

dt
Z

1

0

dpPðp; tÞlog2
Pðp; tÞ
PðpÞPðtÞ : ð1Þ

Here Pðp; tÞ is the joint probability distribution while PðpÞ
and PðtÞ ¼ 1=T are the marginal distributions of p and t.
The quantity 2Iðp;tÞ corresponds to the number of time
points that can be inferred uniquely from pðtÞ; Iðp; tÞ ¼
1bit means that from pðtÞ the cell can reliably distinguish
between day and night [41]. The distributions are obtained
from running long simulations of the chemical rate equa-
tions of the different models [14].
For each system, to maximize the mutual information we

first optimized over all parameters except the coupling
strength. For the CHM, the coupling strength ρwas taken to
be comparable to that of S. elongatus [14], and for the PPN
and the UHM ρwas set to an arbitrary low value, because in
the relevant weak-coupling regime the mutual information
is independent of ρ, as elucidated below and in Ref. [14].
For the PPN, there exists an optimal response time τr ∼
1=kb that maximizes Iðp; tÞ, arising from a trade-off
between maximizing the amplitude of pðtÞ, which
increases with decreasing τr, and minimizing the noise
in pðtÞ, which decreases with increasing τr because of time
averaging [14,42]. Similarly, for the UHM, there exists an
optimal intrinsic frequency ω0 of the individual hexamers.
The UHM is linear and similar to a harmonic oscillator.
Analyzing this system shows that while the amplitude A of
the output xðtÞ is maximized at resonance, ω0 → ω, the
standard deviation σx of x is maximized whenω0 → 0, such

that the signal-to-noise ratio A=σx peaks for ω0 > ω [14].
Interestingly, also the CHM exhibits a maximum in A=σx
for intrinsic frequencies that are slightly off-resonance [14].
Figure 2 shows the mutual information Iðp; tÞ as a

function of the input-noise strength σ2s for the three
systems. In the regime that σ2s is small, Iðp; tÞ is essentially
the same for all systems. However, the figure also shows
that as σ2s rises, Iðp; tÞ of the UHM and especially the PPN
decrease very rapidly, while that of the CHM falls much
more slowly. For σ2s ≈ 3, Iðp; tÞ of the CHM is still above
2 bits, while Iðp; tÞ of the PPN and UHM have already
dropped below 1 bit, meaning the cell would no longer be
able to distinguish between day and night. Indeed, this
figure shows that in the regime of high input noise, a bona
fide clock that can tick autonomously is a much better time
keeper than a system which relies on oscillatory driving to
show oscillations. This is the principal result of our Letter.
It is observed for other values of τc and other types of input,
such as a truncated sinusoid corresponding to no driving at
night (Fig. S6 [14]).
The robustness of our observation that bona fide clocks

are more reliable timekeepers, suggests it is a universal
phenomenon, independent of the details of the system. We
therefore analyzed a generic minimal model, the Stuart-
Landau model. It allows us to study how the capacity to
infer time changes as a system is altered from a damped
(nearly) linear oscillator, which has a characteristic fre-
quency but cannot sustain oscillations in the absence of
driving, to a nonlinear oscillator that can sustain autono-
mous oscillations [14]. Near a Hopf bifurcation where a
limit cycle appears the effect of the nonlinearity is weak, so
that the solution xðtÞ is close to that of a harmonic

FIG. 2. The mutual information Iðp; tÞ as a function of the
input-noise strength σ2s , for the push-pull network, the uncoupled-
hexamer model, and the coupled-hexamer model, see Fig. 1. In
the limit of low input noise, all systems are equally informative on
time, but in the high-noise regime the CHM is most accurate. The
parameters have been optimized to maximize Iðp; tÞ; since these
are (nearly) independent of σ2s (Figs. S1–S3 [14]), they are fixed
(Table S1 [14]).
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oscillator, xðtÞ ¼ 1=2½AðtÞeiωt þ c:c:�, where AðtÞ is a
complex amplitude that can be time dependent [43]. The
dynamics of AðtÞ is then given by

_A ¼ −iνAþ αA − βjAj2A − ϵE; ð2Þ

where ν≡ ðω2 − ω2
0Þ=ð2ωÞwith ω0 the intrinsic frequency,

α and β govern the linear and nonlinear growth and decay
of oscillations, E is the first harmonic of sðtÞ, and ϵ≡
ρ=ð2ωÞ is the coupling strength. Equation (2) gives a
universal description of a driven weakly nonlinear oscil-
lator near a supercritical Hopf bifurcation [43].
The nondriven system exhibits a Hopf bifurcation at

α ¼ 0. By varying α we can thus change the system from a
damped oscillator (α < 0) which in the absence of driving
exhibits oscillations that decay, to a limit-cycle oscillator
(α > 0) that shows free-running oscillations. The driven
damped oscillator (α < 0) always has one stable fixed point
with jAj > 0 corresponding to sinusoidal oscillations that
are synchronized with the driving. The driven limit-cycle
oscillator (α > 0), however, can exhibit several distinct
dynamical regimes [43]. Here, we limit ourselves to the
case of perfect synchronization, where xðtÞ has a constant
amplitude A and phase shift with respect to sðtÞ.
To compute Iðx; tÞ, we use an approach inspired by the

linear-noise approximation [13]. It assumes PðxjtÞ is a
Gaussian distribution with variance σ2xðtÞ centered at the
deterministic solution xðtÞ ¼ 1=2ðAeiωt þ c:c:Þ, where A is
obtained by solving Eq. (2) in steady state. To find σ2x, we
first compute σ2A from Eq. (2) by adding Gaussian white
noise of strength σ2s to E and expanding A to linear order
around its fixed point; σ2xðtÞ is then obtained from σ2A via a
coordinate transformation [14].
Figure 3 shows the mutual information Iðx; tÞ as a

function α, for different values of σ2s . The figure shows
that Iðx; tÞ rises as the system is changed from a damped
oscillator (α < 0) to a self-sustained oscillator (α > 0).
Moreover, the increase is most pronounced when the input
noise σ2s is large. The Stuart-Landau model can thus
reproduce the qualitative behavior of our computational
models, indicating that our principal result is generic.
Interestingly, for the parameter set chosen, the CHM is
even more robust than the Stuart-Landau model, perhaps
because the latter is only weakly nonlinear [14].
To understand why limit-cycle oscillators are more

robust to input noise, we study in section SIIE [14]
analytical models valid in the limit of weak coupling.
For a damped oscillator with a fixed-point attractor (PPN
and UHM), we find that the amplitude A of the harmonic
oscillations (the signal) increases with the coupling strength
ρ, A ∼ ρ. The noise in the output signal σx scales with ρ too,
σx ∼ ρ, because the coupling amplifies not only the input
signal, but also the input noise. Hence, the signal-to-noise
ratio A=σx is independent of ρ: an oscillator based on a
fixed-point attractor faces a fundamental trade-off between

gain and input noise (section SIIE [14]). A limit-cycle
oscillator (CHM) can lift this trade-off: The oscillation
amplitude is a robust, intrinsic property of the system, and
essentially independent of ρ. The output noise σx ∼

ffiffiffi
ρ

p
,

because the coupling not only amplifies the input noise
proportional to ρ, but also generates a restoring force that
constrains fluctuations, scaling as ∼ ffiffiffi

ρ
p

(SIIE [14]). Hence,
A=σx ∼ 1=

ffiffiffi
ρ

p
. These scaling arguments show that (i) con-

cerning robustness to input noise, the optimal regime is the
weak-coupling regime, and (ii) in this regime, a limit-cycle
oscillator is generically more robust to input noise than a
damped oscillator. While both oscillators minimize input-
noise propagation in this regime, only the limit-cycle
oscillator still exhibits a robust amplitude when coupled
weakly to the input.
Yet, the coupling cannot be reduced to zero for limit-

cycle oscillators. When the intrinsic clock period deviates
from 24 h, as it typically will, coupling is essential to phase
lock the clock to the driving signal [13]. Moreover,
biochemical networks inevitably have some level of inter-
nal noise (section SIIF [14]). For the damped oscillator, the
output noise σx resulting from internal noise is independent
of ρ, but since A increases with ρ, A=σx ∼ ρ in the presence
of internal noise only: coupling helps to lift the signal above
the internal noise. For the limit-cycle oscillator, the restor-
ing force ∼ ffiffiffi

ρ
p

tames phase diffusion, such that in the
presence of only internal noise, the output noise σx ∼ 1=

ffiffiffi
ρ

p
and A=σx ∼

ffiffiffi
ρ

p
. Hence, also with regards to internal noise,

a limit-cycle oscillator is superior to a damped oscillator in
the weak-coupling regime. This analysis also shows,

FIG. 3. The mutual information Iðp; tÞ as a function of α of the
Stuart-Landau model [Eq. (2)], for different strengths of the input
noise σ2s . Clearly, Iðp; tÞ rises as the system is changed from a
damped oscillator like the UHM (α < 0) to a limit-cycle oscillator
like the CHM (α > 0). Moreover, the increase is most pro-
nounced when σ2s is large, as also observed for the UHM and
CHM, see Fig. 2. Parameters: ν ¼ 0; β ¼ ω; ϵ ¼ 0.5ω; σ2s in units
of ω−1.
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however, that this regime is not necessarily optimal, since
with only internal noise present A=σx increases with ρ. In
fact, it predicts that in the strong-coupling regime the
damped oscillator outperforms the limit-cycle oscillator.
We emphasize, however, that in this regime our weak-
coupling analysis breaks down and other effects come into
play; for example, nonlinearities arising from the bounded
character of pðtÞ distort the signal, reducing information
transmission.
In the presence of both noise sources, we expect an

optimal coupling that maximizes information transmission
(SIIF [14]). For the limit-cycle oscillator the optimum
arises from the trade-off between minimizing input-noise
propagation and maximizing internal-noise suppression.
For the damped oscillator, A=σx first rises with ρ because
coupling helps to lift the signal above the internal noise, but
then plateaus when the input noise (which increases with ρ)
dominates over the internal noise; for even higher ρ, it
decreases again because of signal distortion. In section SIE
[14] we verify these predictions for our computational
models using stochastic simulations.
Experiments have shown that the clock of S. elongatus

has a strong temporal stability with a correlation time of
several months [44], suggesting that the internal noise is
small. Indeed, typical input-noise strengths based on
weather data [45] and internal-noise strengths based on
protein copy numbers in S. elongatus [46] indicate that in
the biologically relevant regime, at least for cyanobacteria,
input noise dominates over internal noise (Fig. S5 [14]). In
this regime, the focus of our Letter, the optimal coupling is
weak and limit-cycle oscillators are generically more robust
to input noise than damped oscillators.
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Note added in proof.—The study of Ref. [47] independ-
ently arrived at the conclusion that clocks based on limit-
cycle oscillators are more robust to input noise.
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