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Based on large-scale quantum Monte Carlo simulations, we examine the dynamical spin structure factor
of the Balents-Fisher-Girvin kagome lattice spin-1=2 model, which is known to harbor an extended Z2

quantum spin liquid phase. We use a correlation-matrix sampling scheme combined with a stochastic
analytic continuation method to resolve the spectral functions of this anisotropic quantum spin model with
a three-site unit cell. Based on this approach, we monitor the spin dynamics throughout the phase diagram
of this model, from the XY-ferromagnetic region to the Z2 quantum spin liquid regime. In the latter phase,
we identify a gapped two-spinon continuum in the transverse scattering channel, which is faithfully
modeled by an effective spinon tight-binding model. Within the longitudinal channel, we identify gapped
vison excitations and exhibit indications for the translational symmetry fractionalization of the visons via
an enhanced spectral periodicity.
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The search for quantum spin liquid (QSL) states in
frustrated magnets remains an active area of research in
condensed matter physics [1–3]. As topologically ordered
states of matter [4], gapped QSLs exhibit long-ranged
many-body entanglement and fractionalized excitations
beyond one dimension. In order to identify QSL states
in actual materials, spectroscopic measurements such as
inelastic neutron scattering constitute valuable diagnostic
tools, e.g., by detecting scattering continua due to decon-
fined fractionalized spin excitations or anyonic statistics
[5]. Thus, it is important to obtain unbiased theoretical
predictions for the corresponding dynamical spin structure
factor (DSSF) of fundamental microscopic models with
gapped QSL phases. A hallmark two-dimensional geom-
etry in support of strong geometric frustration is the
kagome lattice of corner-sharing triangles. An unbiased
theoretical characterization of kagome-lattice based QSL
phases in terms of spectroscopic probes is important in
view of the compound ZnCu3ðOHÞ6Cl2 (herbertsmithite)
[6,7], as well as Cu3ZnðOHÞ6FBr (Zn-doped barlowite),
put forward recently as a possible spin-1=2 kagome gapped
QSL candidate [8–10]. While indications of a gapped QSL
ground state in the antiferromagnetic Heisenberg model on
the kagome lattice have been reported [11–14], other recent
numerical results indicate that, instead, a gapless QSL may
be realized in this model [15–18]. This leaves the stability
of a gapped topological QSL open for this fundamental
SU(2)-symmetric model of kagome-lattice based quantum
spin physics.
In this respect, it is comforting that another, though

anisotropic, spin-1=2 model by Balents, Fisher, and Girvin
(BFG) has been established to harbor an extended gapped
QSL on the kagome lattice [19], characterized as a Z2

topologically ordered state [20,21]. As such, this model
hosts gapped deconfined spinons, i.e., spin-1=2 excitations,
in sharp contrast to conventional integer spin excitations
such as magnons. In terms of anyonic statistics, the spinons
in the BFG model are bosonic [19]. In addition, the
topological QSL phase of the BFG model also exhibits
gapped vortex excitations of an emerging odd-structured
Ising gauge field [22–24], the so-called “visons” [25–27].
Within a resonating valence bond (RVB) description of the
QSL ground state, a single vison excitation effects sign
changes in the RVB superposition of singlet states across a
semi-infinite line [19]. Carrying neither charge nor spin,
visons do not couple directly to neutrons but can be probed
through their interaction with spinons [28]. Furthermore,
their existence leads to a topology protected fourfold
ground state degeneracy in a system with periodic boun-
dary conditions in both lattice directions [19–21]. The BFG
model, along with several variants, was, indeed, shown to
exhibit a topological contribution to the ground state
entanglement as well as symmetry-protected edge states
due to nontrivial symmetry fractionalization [29–34]. Part
of this progress was possible since this model allows for
sign-problem free, unbiased quantum Monte Carlo (QMC)
simulations on relatively large lattices. Hence, the BFG
model is well suited for probing the spin dynamics of Z2

QSL states on the kagome lattice for gapped deconfined
spinon and vison excitations, based on unbiased QMC
simulations.
Thus, here, we consider this basic model of an extended

Z2 QSL phase on the kagome lattice to study the corre-
sponding DSSF using advanced QMCmethods.We identify
characteristic features of fractionalization in the QSL phase
and contrast them to the DSSF in the XY-ferromagnetically
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ordered region of this model. The Hamiltonian that
we consider reads [cf. Fig. 1(a)] H ¼ −J

P
hj;j0i ðSþj S−j0þ

S−j S
þ
j0 Þ þ ðJz=2Þ

P
⎔ðSz⎔Þ2, in terms of a ferromagnetic

(J > 0) nearest neighbor transverse spin exchange and
longitudinal antiferromagnetic interactions of strength
Jz > 0 on all bonds within the hexagons of the kagome
lattice, compactly expressed in terms of the hexagonal
cluster terms, Sz⎔ ¼ P

j∈⎔ Szj. In the following, we consider
finite rhombic systems with Ns ¼ 3L2 lattice sites and
periodic boundary conditions along both lattice directions
a1, a2 in Fig. 1(a), with the unit cell distance fixed to a ¼ 1.
The first Brilliouin zone (BZ), in terms of the reciprocal
lattice vectors b1, b2, is shown in Fig. 1(b). The Hami-
ltonian H was shown in previous studies to harbor a QSL
ground state for small values of J that is separated from
an XY-ferromagnetic region by a quantum critical point at
J=Jz ¼ 0.07076ð1Þ, which was identified as an XY� tran-
sition [32,33], cf. Fig. 1(c). To formulate the DSSF of the
three-sublattice kagome lattice, we denote by Si;α the spin at
position ri;α on sublattice α (¼ 1, 2, 3) in the ith unit cell
(i ¼ 1;…; L2), and then obtain 3 × 3 correlation-matrices
Sþ−
α;β ðk;ωÞ¼

R
dte−iωthSþk;αðtÞS−−k;βð0ÞþS−k;αðtÞSþ−k;βð0Þi for

the transverse, and Szzα;βðk;ωÞ¼
R
dte−iωthSzk;αðtÞSz−k;βð0Þi

for the longitudinal channel, respectively, where Sk;α ¼
ð1=LÞPi e

−ik·ri;αSi;α. In what follows, we examine, sepa-
rately, the traces over the correlation matrices in each
channel, Sþ−ðk;ωÞ ≔ P

α S
þ−
α;αðk;ωÞ, and Szzðk;ωÞ ≔P

α S
zz
α;αðk;ωÞ, respectively, as they contain the full sum-

mations over the correlation-matrix eigenvalues of the
spectral functions at each fixed momentum transfer.
To calculate the spin spectral functions of the BFG

model, we performed QMC simulations using the stochas-
tic series expansion method [35] for system sizes up to
L ¼ 18. The QMC sampling of this highly frustrated model
in the strongly anisotropic QSL regime J ≪ Jz was
improved by using a decoupling of H in terms of four-
site clusters [34,36,37], combined with directed loop
updates [38,39]. In order to access ground state properties
of the QSL, the temperature T was tuned sufficiently below

the vison excitation gap, as detailed below. To obtain the
DSSF from the QMC simulations, we measured the
corresponding transverse imaginary-time displaced spin-
spin correlation functions and accessed the longitudinal
correlations directly in Matsubara frequency space [40,41],
using the stochastic analytic continuation method in the
formulation of Ref. [42] to obtain the spectral functions in
real frequency space. We performed the analytic continu-
ations independently for the three correlation-matrix eigen-
values for each given momentum k. These are obtained by
diagonalizing the 3 × 3 correlation matrices in the imagi-
nary-time domain, based on the binned QMC time-series
data to estimate the corresponding covariances that enter
the analytic continuation [42,43]. The spectral functions
from the separately continued eigenvalues then yield
Sþ−ðk;ωÞ and Szzðk;ωÞ upon summation.
The benefits of this procedure can be demonstrated by first

considering the XY-ferromagnetic limit Jz ¼ 0 of the BFG
model. In this limit, the system has an XY-ferromagnetic
ground state (a superfluid phase in the bosonic formulation of
the BFG model), which spontaneously breaks its residual
U(1) symmetry. Figure 2 shows Sþ−ðk;ωÞ and Szzðk;ωÞ
along a high-symmetry BZ path [cf. Fig 1(b)], and compares
the spectra from the analytic continuation of the direct trace
(a), (b) to the summation over the separately continued
correlation-matrix eigenvalues (c), (d). Also shown in Fig. 2
are the three magnon branches from linear spin-wave theory
(LSWT) for the XY ferromagnet on the kagome lattice,
obtained in the Holstein-Primakoff representation from a
bosonic Bogoliubov matrix diagonalization [44] in a rotated
reference frame [45]. This comparison shows that the

(a)

(c)

(b)

FIG. 1. (a) Kagome lattice with the nearest neighbor exchange
(solid lines) and hexagonal cluster (dashed lines) terms of the
BFG model. (b) First Brillouin zone (BZ) along with the path
Γ → M → K → Γ (green lines). (c) Ground state phase diagram
of the BFG model.

(a) (c)

(b) (d)

FIG. 2. DSSF Sþ−ðk;ωÞ (a), (c) and Szzðk;ωÞ (b), (d) of the
BFG model for Jz ¼ 0 along the BZ path Γ → M → K → Γ,
obtained at T ¼ 0.03J on an L ¼ 18 lattice. (a) and (b) show
results obtained from analytic continuations of the direct corre-
lation-matrix trace, and (c) and (d) show the summed spectra
from an eigenvalue decomposition. Dashed lines are magnon
branches from LSWT.
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eigenvalue decomposition allows for a higher resolution of
the distinct modes than the analytic continuation of the direct
trace, since the single continuation of the direct trace fails to
discern close-by spectral features in frequency space that are
due to distinct eigenvalues. In particular, the transverse chan-
nel is dominated by the low-energy magnon branch, the
Goldstone soft-mode that results from the spontaneous U(1)
symmetry breaking. The broad continuum above the lowest
magnon branch indicatesmultimagnon excitations. TheGold-
stone mode also contributes to Szzðk;ωÞ but with a much
lower spectral weight that vanishes towards the Γ point. A
larger spectral weight is supported by the magnon branches at
elevated energies of ω ≈ 4J, which the eigenvalue decompo-
sition allows us to separate [cf., e.g., theK point in Fig. 2(d)].
The exactly flat optical magnonmode fromLSWT is found to
be, at most, weakly dispersive in QMC calculations.
The well-defined low-energy magnon excitations in the

XY-ferromagnetic regime contrast strongly to the spin
dynamics observed within the QSL regime, which we
examine next. The QMC result for Sþ−ðk;ωÞ at a value of
J=Jz ¼ 0.06 is shown in Fig. 3(a) (at even smaller J=Jz, the
QMC updates are much less efficient). We observe a broad
continuum of gapped excitations, with a minimum gap at
the Γ point of about 0.4Jz. In the strong Jz regime, the low-
energy configurations are characterized by states with
Sz⎔ ¼ 0 on all hexagons, and a local spin flip creates two
neighboring hexagons with Sz⎔ ¼ 1. Because of the trans-
verse exchange J > 0, these defects delocalize over the tri-
angular lattice of hexagons, forming two spatially separated
spin-1=2 spinon excitations [19]. To quantify the two-spinon
contribution to Sþ−ðk;ωÞ, we use a tight-bindingmodel that
treats the spinons as free particles, with a dispersion relation
ϵk ¼ Jz=2þ ϵtðkÞ, where Jz=2 is the local energy cost of
a single spinon, and ϵtðkÞ ¼ −2t½cosða1kÞ þ cosða2kÞ þ
cosða2k − a1kÞ� the triangular lattice tight-binding
dispersion with t ∼ J the nearest-neighbor hopping ampli-
tude, fitted to the bandwidth of the QMC continuum. In this

approximation, Sþ−ðk;ωÞ ≈ ½ð4πÞ=L2�Pk0 δðω − ϵk0 −
ϵk−k0 Þ is given by the density of two-spinon states, and
interaction effects may be accounted for phenomenologi-
cally by a Lorentzian δ-function broadening [46,47]. This
approximation is shown in Fig. 3(b). Comparisons of
the spectra at various fixed momenta are also available [48].
The tight-binding model captures the spectral support of the
continuum and the enhanced spectral weight near the BZ
corners (K points) at ω ≈ Jz. The continuum in Sþ−ðk;ωÞ
provides a clear signature for deconfined spinons in the QSL
phase, in strong contrast to the sharp gapped magnon
excitations observed, e.g., in quantum disordered spin-
dimer systems or valence bond ordered states [49–51].
The two-spinon gap from Fig. 3 corresponds to the

activated T dependence of the energy E atop the spin
paramagnetic plateau [31] at T ≈ J, cf. the exponential fit
to the data in Fig. 4, which yields Δs ≈ 0.43ð2ÞJz. The
activated behavior of E at even lower temperatures, T ≪ J,
seen in Fig. 4, instead, arises from the thermal proliferation
of vison-pair excitations [31], and from fitting EðTÞ to an
exponential form, we estimate a corresponding two-vison
gap of Δv ≈ 0.012ð1ÞJz. In the quantum-dimer model limit
of the BFG model, for J=Jz → 0, the equal-time vison-
vison correlations are given by a string operator of Szj
operators [19], and correspondingly, two-vison excitations
may be probed through the longitudinal channel Szzðk;ωÞ.
The QMC result for Szzðk;ωÞ for J=Jz ¼ 0.06 is shown in
Fig. 5. From the BZ path data in the left panel, we identify
an excitation gap at the Γ point in accord with the above
estimate. Thus, to obtain the spectral functions, we per-
formed the QMC simulations at a temperature of T ¼
0.002Jz, below the estimated two-vison gap. Based on our
data, we cannot discern vison bound states below the
continuum. Indications for such bound states were reported
for a related quantum dimer model on the triangular lattice
[52], for which, also, the single-vison dispersion is avail-
able [53], based on which the spectral support of the two-
vison continuum could, thus, be constructed and separated
from the bound state.
Upon closer inspection, one identifies, in Fig. 5(a), a

low-energy structure (at the two-vison gap energy) in

(a) (b)

FIG. 3. (a) DSSF Sþ−ðk;ωÞ of the BFG model for J=Jz ¼ 0.06
within the QSL regime, along the BZ path Γ → M → K → Γ,
obtained at T ¼ 0.002Jz on an L ¼ 18 lattice. (b) Density of two-
spinon states within the tight-binding model with t ¼ 0.055Jz,
and a Lorentzian δ-function broadening of half-width 2t. Dashed
lines in both panels show the lower and upper threshold of the
two-spinon continuum within the tight-binding model.

FIG. 4. T dependence of the energy E of the BFG model for
J=Jz ¼ 0.06, along with exponential fits to activated behavior
atop the ground state energy E0 and the energy plateau Ep ≈
−0.255Jz at T ≈ J on an L ¼ 18 lattice.
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Szzðk;ωÞ at the M point. This is seen more explicitly in
Fig. 5(b), which shows Szzðk;ωÞ at a constant energy ω ¼
0.014Jz (similar cuts at other fixed energies are also
available [48]). This repeating structure at the M points
of the BZ (at momenta�b1=2,�b2=2, and�ðb1 þ b2Þ=2)
is in accord with an enhanced spectral periodicity that is
expected in the continuum of the two-vison states, based on
the crystal momentum fractionalization of the vison exci-
tations in a Z2 QSL on the kagome lattice, i.e., anticom-
muting translation operators T1 and T2, T1∶T2 ¼ −T2∶T1,
acting on the single vison excitations along the two lattice
directions [54–60]. For gapped Z2 QSL states, such a
spectral periodicity was shown to provide a spectroscopic
diagnostic of crystal momentum fractionalization of
anyon excitations [54,61]. The low-energy spectral weight
observed in Szzðk;ωÞ at the M points suggests that the
QSL state in the considered parameter regime of the
BFG model can be driven towards a valence bond solid
instability upon adding an appropriate perturbation that
couples to valence bond fluctuations at the M points
[55,62]. An explicit investigation of such a scenario is
provided in Ref. [63].
Finally, we monitor, in Fig. 6, the evolution of the

DSSF upon approaching the QSL phase from the XY-
ferromagnetic regime. In the transverse channel, we
observe (i) a progressive broadening of the lowest magnon
branch at high energies upon decreasing J=Jz, along with
(ii) a reduced spin-wave velocity (as estimated by the slope
of the magnon branch near the Γ point), and (iii) a
redistribution of spectral weight to preform the character-
istic shape of the spinor-continuum in the QSL phase. In the
longitudinal channel, the characteristic energy scale of the
predominant optical modes drops rapidly with decreasing
J=Jz, an effect that is also qualitatively captured by LSWT.
We also observe a strong suppression in the spectral weight
of the lowest magnon mode. Upon entering the QSL phase,
the other two branches merge, and a gap minimum is
formed at the Γ point.
Our results demonstrate the feasibility of probing frac-

tionalization in QSL states from the spin dynamics of
microscopic models on relatively large lattices using

unbiased numerical methods, such as QMC simulations.
It will be intriguing to compare our results to the spin
dynamics of other kagome-lattice based QSL states, e.g.,
with an even Ising gauge structure, which are also acces-
sible to QMC approaches [64]. Furthermore, alternative
numerical approaches such as those used in Refs. [65,66]
can also probe the spin dynamics of QSL states beyond the
realms of unbiased QMC methods.

We thank Z. Y. Meng and Y. Qi for sharing their valuable
insight on crystal symmetry fractionalization, and for
communicating results from a related study [63]. We also
thank F. Hassler, A. M. Läuchli, and F. Pollmann for useful

(a) (b)

FIG. 5. DSSF Szzðk;ωÞ of the BFG model for J=Jz ¼ 0.06
within the QSL regime at T ¼ 0.002Jz on an L ¼ 18 lattice,
(a) along the BZ path Γ → M → K → Γ, and (b) at ω ¼ 0.014Jz.
The hexagon in (b) denotes the BZ.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIG. 6. DSSF Sþ−ðk;ωÞ (left panels) and Szzðk;ωÞ (right
panels) along the BZ path Γ → M → K → Γ for different ratios
J=Jz from QMC simulations at temperatures T near J=ð2LÞ on an
L ¼ 18 lattice. To fit to a common scale, the intensities were
multiplied by individual factors, which are provided in the upper
right corner of each panel separately. Dashed lines are magnon
branches from LSWT.
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