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We show that a wide class of layered superconductor-ferromagnet (S=F) hybrids demonstrates the
emergence of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase well below the superconducting
transition temperature. By decreasing the temperature, one can switch the system from uniform to the
FFLO state which is accompanied by the damping of the diamagnetic Meissner response down to zero and
also by the sign change in the curvature of the current-velocity dependence. Our estimates show that an
additional layer of the normal metal (N) covering the ferromagnet substantially softens the conditions
required for the predicted FFLO instability, and for existing S=F=N systems, the temperature of the
transition into the FFLO phase can reach several kelvins.
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In 1964, Fulde andFerrell [1] andLarkin andOvchinnikov
[2] theoretically showed that strong magnetic field acting
on the electron spins in low-dimensional superconductors
induces a peculiar nonuniform superconducting phase with
the spatial modulation of the order parameter [the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) phase]. The key ingre-
dient for theFFLOstate formation is the splitting of theFermi
surfaces for the spin-up and spin-down electrons due to the
Zeeman interaction. In this case, the Cooper pair cannot be
constructed from the electrons with the opposite momenta
anymore, and the total momentum of the pair becomes
nonzero. The resulting nonuniform profile of the super-
conducting gap strongly depends on the sample dimension-
ality and the anisotropy of the superconductor [3].
Despite the transparent physics behind the FFLO instability,

its experimental observation appeared to be extremely chal-
lenging. First, one needs to deal with the low-dimensional
samples or with the layered heavy-fermion compounds in
order to damp the orbital effect which usually dominates over
theZeeman interaction and suppresses the superconductivity at
the magnetic fields well below the FFLO instability threshold
[4,5]. Second, the FFLOphase is known to be very sensitive to
the disorder which is typically rather strong in thin films or
layered superconductors [6,7]. As a result, the convincing
evidence of the FFLO states formation in an external magnetic
field has been provided only for some quasi-two-dimensional
organic superconductors such as λ-ðBETSÞ2GaCl4 [8],
λ-ðBETSÞ2FeCl4 [9], κ-ðBEDT-TTFÞ2CuðNCSÞ2 [10–14],
and β00-ðETÞ2SF5CH2CF2SO3 [15,16]. The layered structure

of these compounds damps the orbital effect for the field
orientation parallel to the layers, while the highly anisotropic
Fermi surface is expected to provide additional stability for the
FFLO phase [3].
Another promising possibility to realize the FFLO

pairing appears in the multilayered superconductor-
ferromagnet (S=F) structures where the interfaces between
the layers are transparent for the electrons [17]. In such
sandwiches, the splitting of the Fermi surfaces occurs due
to the exchange field inside the F layer which does not
produce the orbital currents. As a result, the Cooper pair
wave function becomes modulated across the layers, and
the FFLO phase appears. This leads to a number of unusual
phenomena such as the oscillatory dependence of the
critical temperature of the S=F bilayer on the F-layer
thickness [18,19] or the π-junctions formation [20,21].
The rich interference physics coming from the interplay
between the FFLO oscillations period and the layers
thicknesses as well as the unusual spin patterns arising
in such systems make them attractive for superconducting
spintronics [22,23].
For more than two decades, it was believed that in S=F

sandwiches the Cooper pair wave function is always
modulated only in the direction perpendicular to the layers
due to the in-plane system homogeneity. But recently, it
was demonstrated that the spin-triplet superconducting
correlations emerging in such a system favors the formation
of the in-plane FFLO phase with the gap potential modu-
lated along the layers [24]. As a result, the critical
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temperature for the FFLO phase in the certain range of
parameters becomes higher than the one for the uniform
state, and the transition from the normal to the FFLO state
occurs. Remarkably, the emergence of the in-plane FFLO
phase should reveal itself through the vanishing Meissner
response of the sample on the external parallel magnetic
field. Experimentally, such a feature can be detected, e.g.,
in the surface inductance measurements on the basis of the
two-coil technique [25,26] which has been recently applied
to the study of the screening properties of the S=F bilayers
[27,28]. The similar instabilities of the uniform state have
been predicted also for a ferromagnetic cylinder covered by
the superconducting shell [29–31] as well as for the planar
superconductor–normal-metal (N) structures under non-
equilibrium quasiparticle distribution [32,33]. However, it
appeared that the experimental observation of the in-plane
FFLO states in all these systems is hampered by the rigid
restrictions of the required material characteristics.
In this Letter, we predict the existence of the in-plane

FFLO phase well below the critical temperature in a wide
class of thin-film S=F and S=F=N sandwiches. The phase
diagrams of such hybrids demonstrate several very unusual
features, which, to our knowledge, contrast with the
diagrams of the all-known systems supporting the FFLO
states. Specifically, the FFLO domain can be totally
isolated from the phase transition line between the normal
and the uniform superconducting states. By decreasing the
temperature, one can provoke the phase transition between
the uniform and FFLO states which is accompanied by the
vanishing Meissner response on the in-plane magnetic field
and the sign change in the curvature of the current-velocity
dependence. Our estimates show that the conditions
required for the predicted FFLO instability are rather soft
and can be fulfilled for a large number of the existing
S=F=N systems consisting of, e.g., the superconducting
NbN, MoN, MgB2, NbTi, TaN, or WSi layer, the ferro-
magnetic CuNi, PdFe, FeNi, or Gd layer, and the layer of
Au, Ag, Al, or Cu as a normal metal. For such systems, the
critical temperature of the transition into the modulated
state can reach several kelvins, which makes them very
promising for the experimental observation of the FFLO
phase.
We start from the general arguments illustrating the

origin of the low-temperature FFLO phase formation.
Consider a thin-film S=F sandwich of thickness much
smaller that the London penetration depth λ. The condition
of the gauge invariance of the free-energy functional allows
us to establish an equivalence of the sign change of the total
magnetic response of the thin-film structure (i.e., the
quantity λ−2 averaged across the structure) and the free-
energy instability towards the formation of the state with a
finite in-plane phase gradient. This general recipe is valid
for arbitrary temperatures and is nicely confirmed by
further direct numerical calculations of the full free energy.
For temperatures T near the superconducting transition

temperature Tc, the screening parameter λ−2, which deter-
mines the relation js ¼ −ðλ−2=4πÞA between the super-
conducting current js and the vector potential A, can be
expanded in the small parameter τ ¼ ðTc − TÞ=Tc,

λ−2 ¼ χτ þ κτ2; ð1Þ
where the coefficients χ and κ are temperature independent.
In the absence of the F layer, the standard BCS model gives
χ > 0 and κ < 0. At the same time, the exchange field in
the ferromagnet gives rise to the spin-triplet superconduct-
ing correlations which renormalize these coefficients. For
rather large normal-state conductivity of the F layer and
small thickness of the S film, the coefficient χ becomes
strongly damped and can even vanish. The latter fact
indicates the formation of the in-plane FFLO state at T ¼
Tc [24]. It is important that the coefficient κ should remain
negative, reflecting the decrease in the number of quasi-
particles when decreasing the temperature. As a result, even
for χ > 0, there exists a possibility for the vanishing of λ−2.
If the total thickness of the S=F sandwich is much smaller
than the London penetration depth, the part of the free
energy containing the square of the superconducting phase
gradient is proportional to the λ−2 value averaged across
the structure. Thus, for jκj ≫ χ in Eq. (1), the FFLO phase
can emerge at the temperature TF well below Tc:
TF=Tc ¼ 1 − χ=jκj. It is exactly this FFLO instability
which makes it impossible to observe the global para-
magnetism predicted in Refs. [34–36]. The latter para-
magnetic state just does not correspond to the free-energy
minimum [37].
To provide support for the above qualitative arguments,

we perform an explicit microscopic calculation of the
magnetic screening parameter λ−2 for the dirty S=F bilayer.
Our analysis is based on the nonlinear Usadel equation

−Dðg∂2
xf − f∂2

xgÞ þ 2ðωn þ ihÞf − 2Δ ¼ 0 ð2Þ

with the normalization condition

g2 þ ff† ¼ 1: ð3Þ
Here, gðx;ωn; hÞ and fðx;ωn; hÞ are the normal and
anomalous Green functions, respectively, f†ðx;ωn; hÞ ¼
f�ðx;ωn;−hÞ, ΔðxÞ is the superconducting gap potential in
the S layer, h is the exchange field in the F layer, ωn ¼
πTð2nþ 1Þ are the Matsubara frequencies, and D is
the diffusion coefficient of the corresponding layer.
The anomalous function and the gap potential also satisfy
the self-consistency equation

Δ ln
T
Tc0

þ
X∞
n¼0

�
Δ

nþ 1=2
− 2πTRef

�
¼ 0; ð4Þ

where Tc0 is the critical temperature of the isolated
superconducting layer. Assuming the small thickness
d0 ¼ ðds þ dfÞ ≪ λ, where ds and df are the thicknesses
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of the S and F layers, respectively, we may write the
London screening parameter averaged over the structure
thickness in the form (see, e.g., Ref. [50])

λ−2 ¼ 16π3T
ecΦ0d0

X∞
n¼0

Z
df

−ds
σReðf2Þdx; ð5Þ

where σ is the normal-state conductivity which takes the
value σs (σf) for the S (F) layer, and Φ0 ¼ πℏc=e is the
magnetic flux quantum.
Technically, it is more convenient to rewrite the expan-

sion (1) in terms of the small temperature-dependent gap
potential ΔðTÞ [37]

λ−2 ¼ αΔ2ðTÞ þ βΔ4ðTÞ; ð6Þ

where the coefficients α and β do not depend on the
temperature, and ΔðTÞ vanishes at T ¼ Tc and monoton-
ically increases with decreasing T.
First, we derive the coefficients α and β. To do this, we

assume that the thickness of the superconductor is small:
ds ≪ ξs, where ξs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ds=ð2πTc0Þ

p
. This allows us to

neglect the spatial variations of the gap potential across
the S layer. Also, we assume that h ≫ Tc0. For this limit,
the coordinate dependence of the anomalous Green func-
tion has been previously calculated in Ref. [38] up to the
terms ∼OðΔ4Þ. Substituting this expansion for f into
Eq. (5) and performing the straightforward calculations,
we find the analytical expressions for α and β which are
presented in Ref. [37]. The typical dependences of these
coefficients on the F-layer thickness are shown in Fig. 1(a).
If the ratio σf=σs is large enough, the coefficient α can
become negative for a certain range of df values which
signals the formation of the FFLO state at the critical
temperature. However, at the points where α ¼ 0, the

coefficient β is always negative. As a result, even for small
positive α values, the second term in Eq. (6) fully
compensates the term ∝ Δ2 at a certain temperature below
Tc making λ−2 vanish and the FFLO phase appear. This
finding provides a new perspective on the experimental
observation of the transitions between the uniform and
FFLO phases since they can be controlled by the variation
of the temperature.
Another intriguing feature associated with the low-

temperature FFLO instability is the sign reversal in the
nonlinear contribution to the relation between the super-
current js and the superconducting velocity which is
proportional to the value q ¼ ∇φ − ð2π=Φ0ÞA (φ is the
phase of the superconducting order parameter Δ).
Qualitatively, this phenomenon can be understood within
the Ginzburg-Landau model. Near the transition to the
FFLO phase, the superconducting contribution to the
density of the free energy has the form [51]

F ¼ ½−α0τ þ β0q2 þ δ0q4�Δ2 þ ðγ0 þ η0q2ÞΔ4; ð7Þ

and js ∝ ∂F=∂q. At a fixed small q, the minimization
of the free energy with respect to Δ gives Δ2 ¼
½α0τ − β0q2�=ð2γ0Þ þOðq4Þ. Substituting this expression
into the supercurrent, we get js ∝ ½β0α0τq − β20q

3 þ
2δ0α0τq3�=γ0. Far from the FFLO phase domain, the last
term in the expression for js is negligibly small compared
to the second one, and ∂2js=∂q2 < 0. However, near the
FFLO instability, the coefficient β0 becomes damped, and
the last term in js with δ0 > 0 produces the sign reversal in
the curvature of the dependence jsðqÞ at small q.
To calculate the dependence jsðqÞ microscopically, one

has to replace ωn → ωn þDq2=2 in the Usadel equa-
tion (2). Generalizing the expressions for the coefficients
α and β in Eq. (6) for q ≠ 0 and taking into account that
js ¼ ðΦ0=2πÞqλ−2ðqÞ, we obtain the dependences jsðqÞ
which are shown in Fig. 1(b). One sees that for df values far
from the region of the FFLO instability (dashed curve), the
dependence jsðqÞ has a standard form with the negative
second derivative for all q values. However, in the vicinity
of the FFLO phase (solid curve), the curvature of the
function jsðqÞ changes its sign at small q which can be
considered as a precursor of the nearby FFLO transition.
Experimentally, such a change in the curvature sign should
reveal itself in the third-harmonics electromagnetic response
measurements [52–54].
All the described analytical results are perfectly sup-

ported by the numerical solution of the nonlinear Usadel
equation [37] and the direct calculation and comparison of
the free energies for the states with different modulation
vectors q. The advantage of the numerical approach is its
applicability to arbitrary low temperatures, in contrast to
the above perturbation theory over small Δ which is limited
by the condition ðTc − TÞ ≪ Tc. Below, we present the
numerical results obtained for the S=F=N trilayers.
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FIG. 1. (a) The coefficients a ¼ αð2πTcÞ2λ2c and b ¼
βð2πTcÞ4λ2c in the expansion (6) as functions of the F-layer
thickness. (b) The dependences of the supercurrent J ¼
jsλ2cTc=ðξfTc0Þ on the superconducting velocity q for
T ¼ 0.8TcðdfÞ, where ξf ¼ ffiffiffiffiffiffiffiffiffiffiffi

Df=h
p

is the superconducting
coherence length inside the ferromagnet, and TcðdfÞ is the
critical temperature corresponding to the thickness df of the F
layer. The solid (dashed) line corresponds to df ¼ 0.91ξf
(df ¼ 0.3ξf). Here, we define λ2c ¼ ecΦ0d0=ð16π3σsdsTcÞ and
take ξf ¼ 10ξs, σsds=ðσfξfÞ ¼ 0.06.
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Previously, in Ref. [24] it was demonstrated that an
additional layer of the normal metal covering the ferro-
magnet may produce more favorable conditions for the
FFLO state formation. The key idea is to choose the
thickness of the F layer to maximize the amplitude of
the spin-triplet correlations at the F=N interface. Then, if
the normal conductivity of the N layer is large enough, the
averaged magnetic screening parameter of the sandwich
becomes substantially damped favoring the FFLO insta-
bility. Here, we exploit this idea and show that for a wide
class of S, F, andN compounds, which are typically used in
fabrication of the π junctions or the spin valves, the
emergence of the FFLO phase in the S=F=N geometry
occurs at the experimentally achievable parameters.
Note also that the transition to the FFLO state can be

accompanied by the appearance of the in-plane local
current density which should average to zero after the
integration across the sandwich. The corresponding spon-
taneous magnetic fields can become of the order of the first
critical field Hc1 which is, of course, a quite measurable
value for a variety of experimental techniques. Certainly,
these spontaneous currents appear only for a particular
profile of the gap function Δ ¼ Δ0eiqy, and further studies
are necessary to clarify if this state is more energetically
favorable than the sinusoidal-like gap profiles.
Note that in our calculations, we neglect the contribution

of the magnetic field energy, which is for sure a valid
approximation when the London penetration depth well
exceeds the structure thickness.
Figure 2 shows the series of the phase diagrams of the

S=F=N trilayers for different thicknesses ds of the S layer.
The parts of the red curves below Tc indicate the lines of the

type-I phase transition between the uniform and the FFLO
phases. The increase of ds results in the shrinkage of the
FFLO domain, and above the certain threshold this domain
can even become fully isolated from the normal state by the
region corresponding to the uniform phase. The absence of
the boundary between the FFLOand the normal-state regions
on the h-T phase diagram [see Fig. 2(d)] contrasts (at least to
our knowledge) with the phase diagrams of all previously
known systems where the direct transition between the
normal or FFLO phases can occur.
Finally, Fig. 3(a) demonstrates the typical dependences

of the magnetic screening parameter λ−2 on the temperature
for different thicknesses df of the ferromagnetic layer. In all
cases, df is chosen in a way that at T ¼ Tc the uniform
superconductivity emerges [see Fig. 2(c)]. There are three
qualitatively different types of λ−2 behavior as the temper-
ature decreases. The first one (black dash-dotted curve) is a
monotonic increase of λ−2 which realizes for the systems
parameters far away from the FFLO domain. In contrast,
the second one (red solid curve) demonstrates the temper-
ature-induced FFLO phase formation: when decreasing T
from Tc the parameter λ−2 starts to grow, reaches its
maximum, and then drops down to zero at the point of
the FFLO instability. The third one (blue dashed curve) is
realized in the intermediate parameter region. Even if the
FFLO state does not emerge at any temperature, the
dependence λ−2ðTÞ can have a maximum which is very
unusual for the conventional superconducting systems and
serves as a precursor of the nearby FFLO domain. Also, our
numerical calculations confirm the sign change in the
second derivative of the current-velocity dependence
jsðqÞ near the FFLO domain [see Fig. 3(b) and compare
with Fig. 1(b)].
To sum up, we have demonstrated the in-plane FFLO

instability well below the critical temperature for S=F and
S=F=N hybrids. Experimentally, such an instability can be

(a) (b)

(c) (d)

FIG. 2. (a)–(c) Phase diagrams of the S=F=N sandwiches with
h=Tc0 ¼ 25 and different thicknesses ds of the S layer. The ratio
ds=ξ0 with ξ0 ¼

ffiffiffiffiffi
2π

p
ξs takes the values (a) 1.2, (b) 1.4, (c) 1.6.

(d) Phase diagram of the S=F=N system with ds=ξ0 ¼ 1.6. In all
panels, σf=σs ¼ 1, σn=σs ¼ 150, dn=ξ0 ¼ 1. In panel (c), the
dashed lines indicate the df values corresponding to the curves in
Fig. 3.
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FIG. 3. (a) The dependences of the screening parameter λ−2 on
the temperature for the S=F=N sandwiches with ds=ξ0 ¼ 1.6, the
N-layer thickness dn=ξ0 ¼ 1, and different thicknesses of the F
layer. (b) The current flowing along the layers as a function
of the superconducting velocity for different df values and
T ¼ 0.45Tc0. In both panels, the black dash-dotted, blue dashed,
and red solid curves correspond to df ¼ 1.5ξf , df ¼ 1.2ξf , and
df ¼ 0.8ξf, respectively. The values ξ0 and j0 are defined as

ξ0 ¼
ffiffiffiffiffi
2π

p
ξs and j0 ¼ σsTc=ðeξ0Þ. Other parameters are the same

as in Fig. 2.
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detected by the vanishing Meissner response of the system
or by the sign reversal of the third harmonics in the
electromagnetic response measurements. At the same time,
even outside the FFLO domain on the phase diagram, the
vicinity of the FFLO instability threshold leads to the
unusual nonmonotonic dependence of the magnetic screen-
ing parameter λ−2 on the temperature. This feature serves as
a precursor of the FFLO phase formation. Remarkably, the
emergence of the FFLO states in S=F=N sandwiches
should occur at the parameter region which can be easily
achieved with the widespread materials. The combination
of a superconducting NbN, TaN, or WSi layer of thickness
∼10 nm and normal metal such as Ag, Au, or Al of
thickness ∼20–30 nm gives the normal conductivity ratio
σn=σs ∼ 150, which is perfect for the observation of the
FFLO states (see, e.g., Fig. 2). At the same time, the
relatively high critical temperature of NbN Tc0 ∼ 10–15 K
makes us hope that the transition to the FFLO phase may
correspond to the temperatures of the order of several
kelvins. As usual, the most suitable ferromagnets are CuNi
or PdFe which have relatively large coherence lengths
providing a possibility to fabricate the layers with df ∼ ξf.
Thus, the S=F=N sandwiches seem to provide a perfect
platform for the observation of the FFLO superconducting
states.
Note finally that the above findings presumably can be

used to improve the design of kinetic inductance detectors
of electromagnetic radiation. Indeed, changing the temper-
ature near the critical temperature of the FFLO transition
(where the Meissner screening effect vanishes), one can get
rather strong and rapid changes in the kinetic inductance
determined by the effective penetration depth and sub-
sequent increase of the detector sensitivity.
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