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We develop a novel approach to the Anderson localization problem in a d-dimensional disordered
sample of dimension L ×Md−1. Attaching a perfect lead with the cross section Md−1 to one side of the
sample, we derive evolution equations for the scattering matrix and the Wigner-Smith time delay matrix as
a function of L. Using them one obtains the Fokker-Planck equation for the distribution of the proper delay
times and the evolution equation for their density at weak disorder. The latter can be mapped onto a
nonlinear partial differential equation of the Burgers type, for which a complete analytical solution for
arbitrary L is constructed. Analyzing the solution for a cubic sample with M ¼ L in the limit L → ∞, we
find that for d < 2 the solution tends to the localized fixed point, while for d > 2 to the metallic fixed point,
and provide explicit results for the density of the delay times in these two limits.
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Introduction.—Sixty years ago Anderson discovered that
the classical diffusion in a random potential can be totally
suppressed by quantum interference effects [1]. Since that
time the problem of Anderson localization has remained in
the focus of very active research and recently it has received
a lot of attention in the context of topological insulators and
many-body localization [2].
Apart from the strictly one-dimensional case, the most

developed nonperturbative theory of Anderson localization
is available for disordered wires. The only important
parameters of such a system are the length L, the mean
free path l, the number of the propagating modes N at the
Fermi energy E, and the localization length ξ ¼ Nl. The
disorder is usually assumed to be weak, so that L, l ≫ λF,
where λF is the Fermi wavelength. There are two powerful
analytical approaches which can solve the problem of
Anderson localization in a wire for an arbitrary ratio
L=ξ: the Dorokhov, Mello, Pereyra, and Kumar (DMPK)
equation [3,4] and the supersymmetric nonlinear σ-model
[5,6]. Both solutions are restricted to the quasi-one-dimen-
sional geometry of a wire, for which the transverse
dimension M is much smaller than L. Despite a lot of
efforts, a similar theory for higher dimensional systems has
not been developed so far and it is the purpose of this Letter
to take the first step towards this long-standing goal.
We consider a d-dimensional weakly disordered sample

of the length L in the x direction and the widthM in all other
transverse directions. A perfect lead is attached to one side of
the sample along the x direction, which has the same cross
sectionMd−1 as the sample. The scattering setup allows one
to introduce the scattering matrix S and the Wigner-
Smith time-delay matrix Q ¼ −iℏS−1=2ð∂S=∂EÞS−1=2,
whose eigenvalues τ̃i are referred to as the proper delay
times (see Refs. [7,8] for reviews). Generalizing the

approach developed for the one-dimensional systems
[9,10] we derive the Fokker-Planck equation for the evolu-
tion of the distribution function Pðfτ̃ig; rÞ in fictitious time
r ∝ L=l, provided that L, M, l ≫ λF. Then we focus on the
time-dependent equation for the density ρðτ̃; rÞ of the delay
times, which contains important information about locali-
zation in the corresponding closed system. Mapping this
equation onto a nonlinear partial differential equation of the
Burgers type, we construct its complete analytical solution
for arbitrary L, M, and l.
Our general solution, which is valid for any dimension-

ality d, allows us in particular to consider a d-dimensional
cubic sample with M ¼ L. Analyzing such a system in the
limit L=λF → ∞, we find that for d < 2 the solution tends
to the localized fixed point, while for d > 2 to the metallic
(diffusive) fixed point and derive explicit analytical results
for the density of the delay times in these two limits. Thus
our approach provides a solid nonperturbative foundation
for the arguments of the scaling theory of Anderson
localization [11].
As the derivation of our results involves a lot of technical

steps, in this Letter we only outline its main points and leave
the technical details for a more specialized publication [12].
Model.—We consider the Hamiltonian for a particle

moving in the d-dimensional δ-correlated disordered
potential:

H ¼ −
Xd−1
i¼0

∂2

∂x2i þ VðrÞ; r ¼ ðx; ρÞ;

hVðrÞVðr0Þi ¼ σδðr − r0Þ; σ ¼ 1

2πντs
; ð1Þ

where x≡ x0, ρ≡ ðx1;…xd−1Þ, ν is the density of states, τs
is the scattering mean free time and we set ℏ ¼ 2m ¼ 1.
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A sample is assumed to be finite with −L ≤ x ≤ 0 and 0 ≤
xi ≤ M for i ¼ 1;…; d − 1, and the Dirichlet boundary
condition is imposed in all directions.
By attaching a perfect lead to one side of the sample

at x ¼ 0, we obtain a scattering system characterized by
the N × N S matrix, which is unitary S† ¼ S−1 and
symmetric ST ¼ S due to the time reversal symmetry.
The eigenfunctions in the transverse directions unðρÞ ¼
ð2=MÞðd−1=2Þ Qd−1

i¼1 sinðπnixi=MÞ, ni ∈ N, correspond to
the eigenenergies En ¼ ðπn=MÞ2. The number of open
channels at the energy E is equal to N¼ γd−1ðM

ffiffiffiffi
E

p
=πÞd−1,

where γd ¼ f½πðd=2Þ�=½2dΓðd=2þ 1Þ�g.
Recursion relations for S and Q matrices.—In order

to derive an equation for the evolution of S by increasing L
to Lþ δL, we first consider the scattering matrix of a thin
slice of the length δL ≪ λF. Using the Lippmann-
Schwinger equation, one can show that the reflection
and the transmission matrices from the left and from the
right coincide, respectively, r0 ¼ r, t0 ¼ t, and to the
leading order in δL=λF are given by

r ¼ −BðI þ BÞ−1; t ¼ I þ r; B≡ i
2
q̂−1=2V̄ð0Þq̂−1=2;

ð2Þ

where q̂ is the diagonal matrix, whose elements are
the quantized longitudinal momenta qn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − En

p
and

V̄nmðxÞ≡ R
xþδL
x dx0

R
dρVðx0; ρÞunðρÞumðρÞ.

Applying the standard formula for the composition
of the scattering matrices and using the fact that r ¼
t − I we derive the relation between Snþ1 ≡ SðLþ δLÞ and
Sn ≡ SðLÞ, the scattering matrices corresponding to the
system of the length L ¼ nδL and Lþ δL ¼ ðnþ 1ÞδL:

fðSnþ1Þ ¼ fðeiq̂δLSneiq̂δLÞ þ Anþ1; ð3Þ

where Anþ1 ≡ q̂−1=2V̄ðLÞq̂−1=2, and fðSÞ≡ i½ðS − IÞ=
ðSþ IÞ�. The above equation is a direct generalization of
the one-dimensional relation [9]. Differentiating it with
respect to E one obtains the recursion relation for Q:

WnQnþ1WT
n ¼ CnðJnQnJTn þ KnÞCn þHn: ð4Þ

All the matrices involved in this equation can be expressed
through Sn, Anþ1, and q̂ and their definitions are given in
the Supplemental Material [13]. Both relations preserve the
symmetries of the scattering and Wigner-Smith matrices,
respectively: S† ¼ S−1, ST ¼ S, Q† ¼ Q, QT ¼ Q. They
hold for any strength of disorder σ and are very convenient
for numerical simulations, as they deal with the matrices
corresponding to d − 1 rather than d-dimensional systems.
Now we assume that disorder is weak, i.e., l ≫ λF. Then

an analysis of the relations (3) and (4) suggests that the
change of S and the eigenvectors of Q at each step of the

recursion is governed by the parameter δL=λF, while the
change of the eigenvalues ofQ by the parameter δL=l [13].
As δL=λF ≫ δL=l, this implies that S and the matrix of the
eigenvectors of Q, O, represent fast variables, while τ̃i are
slow variables. Therefore, in the following we assume that
for L ≫ λF, S and O are statistically independent random
matrices and the first two moments of the distribution of
their matrix elements satisfy the following conditions

hSiji ¼ 0; hOiji ¼ 0; hSijSkli ¼ 0;

hSijS�kli ¼
δikδjl þ δilδjk

N þ 1
; hOijOkli ¼

δikδjl
N

: ð5Þ

These relations can be justified by two observations: (i) the
phases of the S-matrix elements are fast oscillating even in
the absence of disorder, (ii) the momentum of a reflected
particle is completely randomized for weak disorder. In
Supplemental Material we explain why these conditions are
strongly motivated by the recursion relations and check
their validity by numerical simulations.
Fokker-Planck equation and the evolution equation for

the density.—The recursion relation (4) can be transformed
into the Fokker-Planck equation for the joint probability
distribution function Pðfτ̃igÞ in the continuum limit
δL → 0. To this end, we first use the general relation
between Pðfτ̃igÞ calculated at two consequent steps:

Pnþ1ðfτ̃igÞ

¼ Pnðfτ̃igÞ þ
�
−
X
i

∂
∂ τ̃i hδτ̃ii þ

1

2

X
ik

∂2

∂τ̃i∂ τ̃k hδτ̃iδτ̃ki
�

× Pnðfτ̃igÞ; ð6Þ

where h…i stands for the averaging over S,O, and VðrÞ and
only the terms up to the first order in δLmust be retained on
the right-hand side (r.h.s.). The averages hδτ̃ii and hδτ̃iδτ̃ki
can be computed with the help of the perturbation theory:

δτ̃i ¼ hijOTδQOjii þ
X
k≠i

jhkjOTδQOjiij2
τ̃i − τ̃k

; ð7Þ

where fjiig is the standard basis in RN and we omit the
index n for all variables to lighten the notation. The matrix
δQ≡Qnþ1 −Qn can be found from Eq. (4).
Introducing the scaled variables τ ¼ τ̃=τs and r ¼

AdðL=lÞ, with Ad ≡ f½ ffiffiffi
π

p
Γðdþ 1=2Þ�=½Γðd=2Þ�g, and tak-

ing the limit δL → 0, we derive (see the Supplemental
Material [13] for details) the Fokker-Planck equation for
the distribution function Pðfτig; rÞ:

∂P
∂r ¼ 1

N

X
i

∂
∂τi

�
ðN − 1Þτi − 2N −

X
k≠i

τ2i
τi − τk

þ ∂
∂τi τ

2
i

�
P:

ð8Þ
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The distribution function Pðfτig; rÞ contains the full
information about the delay times; however in order to
distinguish between the localized and delocalized phases
of the closed system, it is sufficient to study a simpler
quantity—the density of the delay times ρðτ; rÞ ¼
ð1=NÞPihδðτ − τiÞi, which can be obtained from
Pðfτig; rÞ by integrating out all but one variables τi.
The evolution equation for ρðτ; rÞ, which can be derived

from Eq. (8) in the standard way [14], reads

∂ρ
∂r ¼

∂
∂τ

�
ρ

�
τ − 2 − τ2

Z
dτ0

ρðτ0; tÞ
τ − τ0

�
þ ∂
∂τ

τ2ρ

2N

�
: ð9Þ

Burgers equation and the stationary solution.—The
integrodifferential equation for the density can be mapped
onto a nonlinear partial differential equation employing the
method used in Ref. [15]. We introduce the Stieltjes
transform of ρðτ; rÞ defined as

Fðz; rÞ ¼
Z

∞

0

dτ0
ρðτ0; rÞ
z − τ0

: ð10Þ

The function Fðz; rÞ is analytic in the complex plane for all
z except the positive real axis, where it is discontinuous:

F� ≡ lim
ϵ→0þ

Fðτ � iϵÞ ¼ � π

i
ρðτ; rÞ þ

Z
∞

0

dτ0
ρðτ0; rÞ
τ − τ0

:

ð11Þ

Using this formula, the analyticity of F and Eq. (9) one can
show that F satisfies the nonlinear differential equation of
the Burgers type

∂F
∂r ¼ 1

2N
∂
∂z

�
N½2ðz − 2ÞF − z2F2� þ ∂

∂z z
2F

�
; ð12Þ

whose solution allows us to find ρ through the rela-
tion ρðτ; rÞ ¼ ði=2πÞðFþ − F−Þ.
Hopf-Cole transformation and the nonstationary

solution.—In order to find a solution of Eq. (12) we employ
a variant of the Hopf-Cole transformation:

Fðz; rÞ ¼ z − 2

z2
−

4

z2
u0sðs; rÞ
uðs; rÞ ; s ¼ −

4N
z

ð13Þ

which maps the equation for F onto the generalized
diffusion equation:

8N
∂u
∂r ¼ 4s2u00ss − sðsþ 4NÞu: ð14Þ

One can look for the general solution of this equation as
a linear combination of the eigenfunctions e−ðλ=2ÞruλðsÞ.
It turns out that the spectrum is continuous for λ ¼
ð4μ2 þ 1Þ=4N, and the corresponding orthogonal eigen-
functions are given by the Whittaker functions W−N;iμðsÞ

with μ > 0 [16]. Additionally to this set of the eigenstates
there is another eigenfunction W−N;1=2ðsÞ for λ ¼ 0 corre-
sponding to the stationary state [17]. Thus the solution of
Eq. (14) can be written as

uðs;rÞ¼ c0W−N;1
2
ðsÞþ

Z
∞

0

dμcðμÞe−½ð4μ2þ1Þr=8N�W−N;iμðsÞ;

ð15Þ

where the coefficients c0 ¼ ΓðN þ 1Þ and cðμÞ ¼
f½8μ sinhðπμÞΓðN þ 1

2
þ iμÞΓðN þ 1

2
− iμÞ�=½πð1þ 4μ2Þ×

ΓðNÞ�g are determined from the initial condition
uðs; 0Þ ¼ e−s=2. This formula along with Eq. (13) and
the relation ρðτ; rÞ ¼ ði=2πÞðFþ − F−Þ provides the
general solution for ρðτ; rÞ, which is valid for any
L=λF ≫ 1, N ∝ ðM=λFÞd−1 ≫ 1 and l=λF ≫ 1.
The density of delay times for a cubic sample in the

thermodynamic limit.—For a cubic sample M ¼ L and it
follows from Eq. (15) that the r dependence of the solution
is governed by the parameter r=N ∝ ðλF=lÞðL=λFÞ2−d,
which has a meaning of the inverse dimensionless con-
ductance g−1. One can see that in the thermodynamic limit
(L=λF → ∞), r=N → ∞ for d < 2 and r=N → 0 for d > 2.
In the former case, the solution tends to its localized fix
point given byW−N;1=2ðsÞ, whereas in the latter case it tends
to the metallic (diffusive) fixed point, where the contribu-
tion from all W−N;iμðsÞ is important. The d ¼ 2 case is a
marginal one and requires more careful treatment [12].
Localized regime.—In the localized regime, where the

solution is determined by the stationary state, the density
can be found from the asymptotics of W−N;1=2ðsÞ at
N → ∞. As s ∝ N=τ, such asymptotics depend generally
on the value of τ. It turns out that one needs to consider
separately two different regimes: τ ∼ N0 and τ ∼ N2, for
which the asymptotics of W−N;1=2ðsÞ and hence the
expressions for the density are different:

ρstðτÞ ¼
(

2
π

ffiffiffiffiffiffi
τ−1

p
τ2

; τ ∼ N0; τ ≥ 1

4N
τ2
; τ ≳ N2:

ð16Þ

A long τ−2 tail in the distribution of the delay times in the
localized regime was previously found analytically for 1D
and quasi-one-dimensional systems [7,18]. In the numeri-
cal simulations for the 2D Anderson model both power
laws τ−3=2 and τ−2, which follow from our result, were
identified [19].
The localization length can be estimated as ξ ∝ vFτ

typ
W ,

where vF is the Fermi velocity and τtypW is a typical value of
theWigner delay time τW ¼ P

N
i¼1 τ̃i. According to Eq. (16)

a typical value of τ̃ is of order of τs and therefore
ξ ∝ NvFτs ¼ Nl. This result is in agreement with the
quasi-one-dimensional result, where L → ∞ at constant
W. For a cubic sample with d < 2, N ∝ ðL ffiffiffiffi

E
p Þd−1 grows
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with L, however, ξ=L → 0 in the thermodynamic limit, as
expected in the localized regime.
Diffusive and ballistic regimes.—In the metallic regime,

where r=N ≪ 1, a direct analysis of Eq. (15) is com-
plicated, so it is more convenient to derive the limiting
solution in a different way. For r=N ≪ 1 the last term in
Eq. (12) is small and hence can be neglected, then
introducing the new function ψðξ; rÞ, such that F ¼
ðz − 2Þ=z2 þ z−1ψðln z; rÞ, one can map Eq. (12) onto
the inviscid forced Burgers equation

∂ψ
∂r þ ψ

∂ψ
∂ξ ¼ 2e−ξ − 4e−2ξ; ð17Þ

which can be solved by the method of characteristics:

Fðz; rÞ ¼
z − 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − zþ z2

z2
0

q
z2

; ð18Þ

where z0 ¼ z0ðz; rÞ is determined implicitly by the equation
fðz0; rÞ ¼ z with fðx; rÞ≡ ðx=2Þfx½1þ coshð2r=xÞ� þ
2 sinhð2r=xÞg. This formula gives a solution at an arbitrary
value of r ∝ L=l in the metallic regime. Now we can
analyze it in detail in the ballistic (L=l ≪ 1) and the
diffusive (L=l ≫ 1) limits.
In the ballistic regime, r ≪ 1, one can expand fðx; rÞ in

the power series in r=x and find z0 approximately. The
leading order result reads

Fðz; rÞ ≈ 1

z − 2r
; ⇒ ρðτ; rÞ ¼ δðτ − 2rÞ; ð19Þ

which describes a ballistic motion with the Fermi velocity,
L ∝ vF τ̃, as expected.
In the diffusive regime (r ≫ 1), the solution can be

found by scaling z0 ¼ yr, z ¼ wr2, and Fðz; rÞ ¼
ð1=r2ÞF̃ðz=r2; rÞ and keeping only the leading order terms
in r. The appearance of such a scaling implies that a typical
delay time τ̃ ∝ L2=D (D is the classical diffusion constant),
which is very natural in the diffusive regime. The function
F̃ðw; rÞ is then given by

F̃ðw; rÞ ¼ 1

w
þ 2

rw
3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w
y2

− 1

r
; ð20Þ

where y ¼ yðwÞ satisfies the equation y cosh y−1 ¼ ffiffiffiffi
w

p
.

This result implies that ρðτ; rÞ ≈ ρ̃ðwÞ=r3 ≠ 0 only for
w ∈ ½wmin; wmax�, where wmin ≈ π2=16r2 and wmax ≈ 2.28.
The behavior of ρ̃ðwÞ can be found analytically at
w → wmin, where ρ̃ðwÞ ≈ 2=πw3=2, and at w → wmax, where
ρ̃ðwÞ ≈ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðwmax þ 1Þðwmax − wÞp
=πw2

max. For intermediate
values of w, ρ̃ðwÞ can be determined numerically
from Eq. (20).
The appearance of the power law τ−3=2 tail in the metallic

regime can be related to the classical diffusion [20].

Comparison with the DMPK equation and other
approaches.—Since our method works also for a quasi-
one-dimensional geometry, it makes sense to compare it
with the DMPK equation. In Refs. [21,22] the DMPK
equation for the reflection eigenvalues in the presence of
absorption was derived. As the proper delay times can be
extracted from the reflection eigenvalues in the limit of
weak absorption [23], one can obtain the DMPK equation
for proper delay times and compare it with our Eq. (8). It
turns out that Eq. (8) coincides with the DMPK equation in
the quasi-one-dimensional case.
We stress that the scattering isotropy assumption for a

thin slice, which is crucial for the derivation of the DMPK
equation [14], is not used in our approach, in which the
scattering properties of a slice are treated microscopically.
This allows us to study the problem in higher dimensions.
In Ref. [24] a similar scattering setup with a single

multichannel lead was considered and a relation between
the statistics of the partial delay times and certain corre-
lation functions of the nonlinear σ model was derived. In
contrast to the present method, such an approach is limited
by the available solutions of the σ model: one can either
employ a nonperturbative solution for the quasi-one-
dimensional geometry or rely on the perturbative expansion
in the metallic regime in higher dimensions. These limi-
tations are shared by most of the other known methods, in
contrast to our approach.
Another outcome of Ref. [24] is a simple relation

between the statistics of the delay times and the local
statistics of the wave functions derived for a single-channel
lead. It would be of great interest to generalize that relation
to a multichannel case; this would allow one to get
information about wave functions of a closed sample
directly from the results of the present work.
Conclusions.—We have developed a new approach to the

d-dimensional Anderson localization problem, which
enabled us to obtain in a nonperturbative way the statistics
of the delay times in the ballistic, diffusive, and localized
regimes at weak disorder. It overcomes the limitations of
the existing methods and paves the way for studying
analytically Anderson localization in higher dimensional
systems.

I acknowledge useful discussions with C.W. J.
Beenakker, P. W. Brouwer, V. Cheianov, Y. V. Fyodorov,
and C. Texier.
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