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We report on the experimental realization of a uniform synthetic magnetic flux and the observation
of Aharonov-Bohm cages in photonic lattices. Considering a rhombic array of optical waveguides, we
engineer modulation-assisted tunneling processes that effectively produce nonzero magnetic flux per
plaquette. This synthetic magnetic field for light can be tuned at will by varying the phase of the
modulation. In the regime where half a flux quantum is realized in each plaquette, all the energy bands
dramatically collapse into nondispersive (flat) bands and all eigenstates are completely localized. We
demonstrate this Aharonov-Bohm caging by studying the propagation of light in the bulk of the photonic
lattice. Besides, we explore the dynamics on the edge of the lattice and discuss how the corresponding edge
states can be continuously connected to the topological edge states of the Creutz ladder. Our photonic
lattice constitutes an appealing platform where the interplay between engineered gauge fields, frustration,
localization, and topological properties can be finely studied.
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Introduction.—The investigation of electron transport in
crystals subjected to external magnetic fields has led to the
discovery of many intriguing phenomena including the
integer and fractional quantum Hall effects [1,2]. In recent
years, inspired by the idea of quantum simulation [3], there
has been a growing interest in realizing and exploiting
synthetic magnetic fields for electrically neutral particles
in artificial crystals, such as cold atoms in optical lattices
[4–6]. Synthetic magnetic fields have also been realized for
photons, thus paving the way to the emergent field of
topological photonics [7–9]. For example, a uniform
magnetic field has been realized using off-resonantly
coupled ring resonators [10], and a strain-induced pseu-
domagnetic field has been demonstrated in coupled-wave-
guide arrays [11]. Additionally, Landau levels physics has
been explored in a multimode ring resonator through the
realization of a fictitious Lorentz (or Coriolis) force acting
on photons [12].
The quantum properties of a charged particle moving in a

magnetic field find their origin in the Aharonov-Bohm
(AB) phase [13,14], namely, the phase acquired by the
wave function of the particle as it performs a loop around a
spatial region containing a nonzero magnetic flux. Direct
evidence of this AB phase has been experimentally
demonstrated in electronic systems [15], and more recently,
in photonics [16,17] and ultracold atoms [18]. Interestingly,
for certain geometries and specific values of transverse
magnetic fields, noninteracting particles can exhibit com-
plete localization [19,20] due to destructive interferences of
the wave function. This AB caging phenomenon, which

was found to occur in the T 3 (or dice) and the rhombic
lattice, is distinct from Anderson localization [21], which is
instead caused by disorder. An experimental signature of
this phenomenon was reported in solid state, by detecting a
depression of the critical current and that of the super-
conducting-transition temperature in a network of super-
conducting wires [22], and also by magnetoresistance
measurements in normal metal networks [23].
Here, we demonstrate the first experimental realization

of a uniform synthetic magnetic flux in ultrafast-laser-
fabricated waveguide arrays, and use this setting to observe
AB cages for light. The idea of creating and controlling a
synthetic magnetic flux for photons propagating in a lattice
was first proposed in Ref. [24], where a periodic modu-
lation of the intersite tunneling amplitudes was shown
to realize complex effective tunneling matrix elements;
see also Refs. [25,26]. In this Letter, we follow another
approach [25], and apply a linear detuning of the propa-
gation constants along the lattice, in order to suppress the
effective intersite tunneling; this tunneling is then restored
and controlled by resonantly modulating the propagation
constants with a desired phase of modulation. Complex-
valued tunneling matrix elements and a nonzero synthetic
magnetic flux are successfully generated through this
resonant modulation-assisted tunneling process. We build
on this scheme to realize AB cages for photons evolving on
a rhombic geometry [Fig. 1(a)]. In the caging limit, which
is reached when each plaquette is associated with a flux of
π, all the energy bands of the lattice become dispersionless
(flat). By launching input states that overlap with these
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flatbands, we observe breathing motions of the optical
intensity, which clearly signal photonic AB caging. We
then demonstrate that the overall bandwidth of the spec-
trum can be well controlled by varying the driving
parameters. We also present the dynamics of the states
localized on the edge, which can be continuously con-
nected to the topological midgap edge states of the Creutz
ladder [27,28].
Driving protocol.—Consider a quasi-1D rhombic lattice

[20,25,29–31] with three sites (A, B, and C) per unit cell,
Fig. 1(a). In the tight-binding approximation, the single-
particle Hamiltonian with only nearest-neighbor tunneling
processes reads

Ĥ0¼−J
X

s

ðâ†s b̂sþ â†s ĉsþ â†s b̂s−1þ â†s ĉs−1þH:c:Þ; ð1Þ

where J is the tunneling amplitude between neighboring
sites, â†s , b̂†s and ĉ†s (âs, b̂s, and ĉs) are the creation
(annihilation) operators for a particle at the A, B, and C
sites of the sth unit cell, respectively. This lattice supports
three energy bands, two of them are dispersive and the third
one is perfectly flat at zero energy [31]. To realize complex-
valued tunneling amplitudes leading to a nonzero magnetic
flux per plaquette, the Hamiltonian of the system is
engineered in the following way. First, the on-site energies
are linearly detuned along the lattice

Ĥd¼−Δ
X

s

½2sâ†s âsþð2sþ1Þb̂†s b̂sþð2sþ1Þĉ†s ĉs�; ð2Þ

where Δ is the on-site energy shift between nearest-
neighbor sites, which is considered to be large, Δ ≫ J,

to inhibit effective tunneling (an effect known as Wannier-
Stark localization [32]). The on-site energy offsets are then
independently and periodically modulated in time

ĤAC¼
K
2

X

s

½fðωtÞâ†s âsþfðωtþθÞb̂†s b̂sþfðωt−θÞĉ†s ĉs�;

ð3Þ

where K and ωð≡2π=TÞ are the peak-to-peak amplitude
and frequency of a square wave modulation (f), respec-
tively, þθ (−θ) is the relative phase of modulation between
the A and B (C) sites. Considering the total time-dependent
Hamiltonian, ĤðtÞ ¼ Ĥ0 þ Ĥd þ ĤAC, a resonant AC
modulation (i.e., Δ ¼ ων where ν ∈ Z) can restore effec-
tive tunneling processes [25], as depicted in Fig. 1(b).
The quasienergy spectrum for this periodically driven
system is obtained by diagonalizing the Floquet or effective
Hamiltonian, Ĥeff ≡ ði=TÞ log ÛðTÞ, where the time-
evolution operator over one period is defined as ÛðTÞ ¼
T exp½−i R T

0 Ĥðt0Þdt0�, T indicates the time ordering, and T
is the period of driving [33,34].
In the high-frequency limit ω ≫ J and for a resonant

modulation, one can employ standard methods [33,34] to
calculate a systematic expansion in 1=ω of the operator
Ĥeff . The lowest order of this expansion is of the form

Ĥð0Þ
eff ¼ jJeff j

X

s

�
eiθ1 â†s b̂s þ e−iθ2 â†s b̂s−1 þ e−iθ3 â†s ĉs

þ eiθ4 â†s ĉs−1 þ H:c:
�
; ð4Þ

where the restored tunneling amplitudes are now complex
valued and a nonvanishing constant flux Φ ¼ P

jθj is
realized in each plaquette [Fig. 1(c)].
Figure 2(a) shows how the synthetic flux Φ and the

modulus of the effective tunneling amplitude jJeff j vary as a
function of the phase of modulation θ. The AB caging
condition that yields a full localization of the eigenstates is
met when Φ ¼ π, i.e., when the phase of modulation is
θ ¼ π=2 or θ ¼ 3π=2. The exact Floquet quasienergy
spectrum obtained from the diagonalization of Ĥeff is
shown in Fig. 2(b) as a function of K=ω for the caging
limit, θ ¼ π=2. Figure 2(c) presents a comparison of the
exact quasienergy spectrum for the experimentally realized
drive frequency (see below), ω=J ¼ 12.64, and the one

obtained from Ĥð0Þ
eff in Eq. (4), thus indicating that the high-

frequency approximation is valid for our experiments.
In the AB caging limit (Φ ¼ π), the spectrum displays

three nondispersive bulk bands, Figs. 2(b)–2(c). One band
is at energy εbulk0 ¼ 0 and the localized eigenstates read
jψbulk

s;0 i ¼ ðb̂†s−1 þ ĉ†s−1 þ b̂†s − ĉ†sÞj0i; the eigenstates are
given in a gauge where the tunneling phases entering the
Hamiltonian in Eq. (4) are θ1 ¼ π and θ2−4 ¼ 0. The other

FIG. 1. (a) Schematic diagram of a rhombic (or diamond) lattice
with three sites (A, B, and C) per unit cell. (b) Complex-valued
tunneling amplitudes are generated by applying a linear gradient
of on-site energy Δ along the lattice and then periodically
modulating the on-site energies with frequency ω ¼ Δ and phase
θ, see Fig. 2(a). (c) In this driving protocol, a nonzero synthetic
magnetic flux (Φ) per plaquette is realized and it can be tuned by
varying the phase of modulation θ. (d) Simplified sketch illustrat-
ing the 3D waveguide paths of a driven photonic rhombic lattice
with Φ ¼ π flux per plaquette. The linear gradient of on-site
energy is realized by circularly curving the lattice. Here, the color
contrast indicates a square wave modulation of the on-site energy.
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two bands appear at energies ϵbulk� ¼ �2jJeff j and the eige-
nstates are jψbulk

s;� i ¼ ðb̂†s−1 þ ĉ†s−1 ∓ 2â†s − b̂†s þ ĉ†sÞj0i. In
Fig. 2(b), we also see the appearance of states that are
localized at the edges (highlighted by red lines). Indeed,
when open boundary conditions are considered, such that
the rhombic chain has an edge with an A site termination,
the effective model (4) predicts a pair of states with energies
ϵedge� ¼ � ffiffiffi

2
p jJeff j; for the left edge of the chain, the eige-

nstates read jψedge
1;� i ¼ ð∓ ffiffiffi

2
p

a†1 − b†1 þ c†1Þj0i. Similarly, a
pair of edge states would appear on the right edge [35].
Interestingly, the edge states of the rhombic chain with π

flux per plaquette can be continuously connected to
the topological midgap edge state of the Creutz ladder
[27,28]. This can be seen by adding an on-site offset
ĤδA ¼ δA

P
sâ

†
s âs and by considering the limit δA ≫ Jeff ;

see Fig. 2(d) and [36] for more details on this mapping.
Experiments.—Our experimental platform consists of

photonic lattices—periodic arrays of evanescently coupled
optical waveguides—fabricated using ultrafast laser
inscription [36,37]. Finite rhombic lattices with twelve
unit cells were fabricated with a waveguide-to-waveguide

separation a=
ffiffiffi
2

p ¼ 17 μm. In the scalar-paraxial approxi-
mation [38–40], the evolution of the optical field along the
propagation distance (z) of our photonic lattices is formally
equivalent to the time evolution of a single particle
wave function obeying the discrete Schrödinger equation
associated with the Hamiltonian Ĥ0 in Eq. (1). By
characterizing a set of directional couplers (two identical
evanescently coupled waveguides) at 780 nm wavelength,
we obtained the analogous tunneling strength, J ¼ 0.035�
0.002 mm−1 entering Eq. (1). The next-nearest-neighbor
and higher-order tunneling processes were insignificant for
the maximum propagation distance considered in this
work. Within the mapping described above, the propaga-
tion constants of the optical modes play the role of on-site
energies. Hence, the Hamiltonian Ĥd in Eq. (2) can be
simulated by applying a linear gradient to the propagation
constants; here this is obtained by circularly curving the
axes of the waveguides in the photonic lattice [32,41,42].
Specifically, a radius of curvature R leads to an energy
shift Δ ¼ n0a=ð2RƛÞ in Eq. (2), where n0 is the average
refractive index of the substrate and λ ¼ 2πƛ is the free-
space wavelength of light. The driving term ĤAC in Eq. (3)
is then mimicked by applying a spatial square-wave
modulation of the propagation constants, which is realized
by varying the translation speed of fabrication; see Fig. 1(d)
and [36]. In our experiment, this modulation has a period
z0 ¼ 2π=ω ¼ 14 mm, and it does not significantly affect
the intersite tunneling strength [43,44]. The peak-to-
peak amplitude of the square wave modulation (K) was
measured by characterizing a set of straight directional
couplers fabricated with modulated translation speeds
[v1 ¼ ðv0=2ÞfðωzÞ and v2 ¼ ðv0=2Þfðωzþ πÞ]; see
[36]. The final modulated lattices with circularly curved
paths were fabricated inside a 70-mm-long borosilicate
substrate using two sets of extrema of translation speeds,
fvmax; vming ¼ f9; 6g mm=s and f9; 7g mm=s, which
leads to the parameters values K=ω ¼ 1.35 and 0.85,
respectively [see Eq. (3)]. Besides, in all the experiments
described below, the resonance condition was set to
Δ ¼ ω ¼ 12.64J.
The evolution of the optical intensity governed by the

static Hamiltonian in Eq. (1), in the absence of driving
(K ¼ 0 and Δ ¼ 0), is presented in [36]; see also the inset
in Fig. 3. As shown in Fig. 2(a), the synthetic magnetic flux
can be activated in a modulated lattice, where it can
be tuned by varying the phase of modulation. In [36],
we have presented the evolution of an input state, localized
on a bulk A site, with phases of modulation θ ¼ π=5 and π.
Here in the main text, we focus on a specific value of flux,
Φ ¼ π, for which optical waves tunneling along a closed
loop on the lattice acquire a nonvanishing AB-type phase of
π, thus realizing the photonic AB-caging regime. In our
experiments, the maximum achievable strength of on-site
modulation, which does not affect the tunneling strength,
was found to be K ¼ 1.35ω. In this situation,

FIG. 2. (a) Variation of flux and the modulus of effective
tunneling amplitude as a function of the phase of modulation (θ)
for K=ω ¼ 1.35. (b) Quasienergy spectrum for a finite rhombic
chain with θ ¼ π=2. Blue and red colors are associated with the
bulk and edge modes, respectively. The dashed vertical lines
indicate the values of K=ω (1.35 and 0.85) that were realized in
the experiment. (c) A comparison of the Floquet quasienergy
spectrum for ω=J ¼ 12.64 and ω=J → ∞. Here, K=ω ¼ 1.35.
(d) Zoom of the energy spectrum of Ĥð0Þ

eff with an additional
detuning δA of the on-site energy at A sites (full spectrum shown
in the inset). The red dashed line is the energy (ECreutz

− ¼
−4J2eff=δA) of the lowest flatband of the Creutz ladder into which
we map Ĥeff þ ĤδA for δA ≫ Jeff. The upper flatband of the
Creutz ladder is at energy ECreutzþ ¼ 0. The black dotted line
corresponds to the edge state, which becomes a topological
midgap state (protected by an emergent chiral symmetry) in the
Creutz-ladder limit δA ≫ Jeff . Parameters are chosen as in (c).
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Φ ¼ π magnetic flux per plaquette is realized for a phase
θ ¼ π=2 and the effective tunneling strength becomes
jJeff j ¼ 0.509J; see Fig. 2(a).
By launching light at 780 nm wavelength into a bulk A

site, we excite a superposition of the upper and lower
flatband states and observe a breathing motion of the
optical intensity, as shown in Fig. 3(a). In this case, the
expected period of oscillation, determined by the energy
gap between the upper and lower flatbands, is
π=ð2jJeff jÞ ≈ 88 mm. The optical intensity is trapped at
the initially excited A site and its four nearest neighbor sites
due to the AB caging phenomenon. To demonstrate the
tunability of the overall bandwidth of the spectrum, we
perform another set of experiments with K=ω ¼ 0.85 and
θ ¼ π=2, implying Jeff=J ¼ 0.357, see Fig. 3(b). In this
case, the frequency of the breathing motion is relatively
lower, which reflects the smaller bandwidth of the spec-
trum; specifically, the expected period of oscillation is
π=ð2jJeff jÞ ≈ 124 mm. Figure 4(a) shows the comparison
between the measured and expected variation of the optical

intensities at the initially excited bulk A site—here, the
dashed and solid lines indicate the z evolution of the optical
intensities which were numerically calculated for ω=J ¼
12.64 by solving the Schrödinger equation associated with
the Hamiltonians Ĥeff and Ĥðt ↔ zÞ, respectively. In the
experiment, the oscillation frequency was estimated from
the half of the total period of oscillation, i.e., the propa-
gation distance at which the intensity at the initially excited
A site becomes minimal (≈ 0). To further confirm the
existence of three flatbands (AB caging), we launched light
into a single bulk C site, which has nonzero overlap with all
three bands. In that case, the observed oscillations clearly
revealed two frequencies, in agreement with the two
relevant energy separations of the spectrum in Fig. 2(c);
see [36].
In the next step, we launch light at the A site on the

edge—this input state efficiently overlaps with the edge
modes located in both band gaps. In the experiment, the
optical intensity was observed to oscillate among the A site
(where light was initially launched) and its two neighboring
B and C sites. As the energy gap between these edge modes
is smaller compared to that between the upper and lower
flatbands [Fig. 2(c)], we observe a breathing motion of
optical intensity with relatively lower frequency (compared
to the bulk A site excitation), see Fig. 4(b).
Conclusion.—We have experimentally demonstrated the

realization of a uniform synthetic magnetic flux in ultrafast-
laser-fabricated rhombic lattices. This driving protocol can
be extended to realize a uniform flux in 2D lattices, such as
the square lattice, indicating an exciting route towards the
experimental realization of the Hofstadter spectrum [45]
and associated topological phenomena [46] in photonic

FIG. 3. Observation of Aharonov-Bohm photonic caging in the
presence of Φ ¼ π magnetic flux per plaquette. Experimentally
measured output intensity distributions at five different propa-
gation distances (shown on each image) for K=ω ¼ 1.35 (a) and
K=ω ¼ 0.85 (b). The optical intensity exhibits a breathing motion
whose frequency is determined by K=ω. For all measurements,
light was injected at the red circled A site—this input state
overlaps efficiently with the upper and lower flatbands and the
frequency of the observed breathing motion is related to the
energy gap between these two bands. Each image is normalized
so that the total intensity is 1. The field of view is approximately
121 μm × 61 μm. The inset shows the spreading (delocalization)
of the optical intensity in a straight lattice (i.e., Φ ¼ 0); see [36].
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FIG. 4. (a) Graphical representation of Fig. 3. The dashed and
solid lines indicate the z evolution of optical intensities (at the
initially excited bulk A site), which were numerically calculated
solving the Schrödinger equation for ω=J ¼ 12.64 associated
with the Hamiltonians Ĥeff and Ĥðt ↔ zÞ, respectively. Small
oscillations can be observed as a consequence of micromotion.
The filled circles indicate the measured light intensities at the A
site. See also Fig. A3 in [36]. (b) Edge dynamics—when light is
launched at the A site on the edge, the input state overlaps with
edge modes located in both band gaps. In this case, a breathing
motion with relatively lower frequency (compared to the bulk
excitation) was observed, as expected. Indeed, the frequency of
this breathing motion is associated with the energy difference
between the edge modes [see Fig. 2(c)].
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lattices. In addition, the experimental platform offered by
photonic lattices allows one to address and control specific
lattice sites independently, which enables the realization
and manipulation of magnetic flux on each individual
plaquette; this makes the creation of spatially periodic or
even random flux configurations [47,48] accessible in
experiments.
Realizing synthetic magnetic flux for light has allowed

us to observe AB caging in photonic lattices, an effect that
originates from the isolated flatbands of the underlying
spectrum. This is to be contrasted with other models that
were previously implemented in the absence of magnetic
flux, e.g., the static rhombic lattice [31] or the Lieb lattice
[49,50], where flatbands always appear together with
dispersive ones. We stress that these previous setups
required specific state preparations to observe localization.
Interestingly, in the case of AB caging, the role of
interactions is enormously enhanced [51–53], even at the
mean-field level, and it can lead to nontrivial states of
matter where, for instance, time-reversal symmetry is
spontaneously broken [54]. This possibility therefore paves
the way to investigate the impact of optical nonlinearities in
fully gapped flatband systems [9,55].
Raw experimental data are available in Ref. [56].
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