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The decay of correlations in ionic fluids is a classical problem in soft matter physics that underpins
applications ranging from controlling colloidal self-assembly to batteries and supercapacitors. The
conventional wisdom, based on analyzing a solvent-free electrolyte model, suggests that all correlation
functions between species decay with a common decay length in the asymptotic far field limit. Nonetheless,
a solvent is present in many electrolyte systems. We show using an analytical theory and molecular
dynamics simulations that multiple decay lengths can coexist in the asymptotic limit as well as at
intermediate distances once a hard sphere solvent is considered. Our analysis provides an explanation for
the recently observed discontinuous change in the structural force across a thin film of ionic liquid-solvent
mixtures as the composition is varied, as well as reframes recent debates in the literature about the screening
length in concentrated electrolytes.
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The study of ionic fluids and electrolytes has received
significant interest in recent times due to its central
relevance to a plethora of technological applications,
ranging from controlling colloidal self-assembly [1] to
supercapacitors and batteries [2]. The challenge deals with
the rich physics that arise from competing long-ranged
Coulomb interactions and the steric repulsion of particles.
The arrangement of ions in bulk and near interfaces governs
properties such as capacitance [3–5] and effective forces
between colloids [6]; thus a physics understanding of how
ion-ion correlations decay and how electric fields are
screened is central to designing fit for purpose electrolytes.
The decay of correlations in ionic fluids is a classical

problem in soft matter and liquid state physics [7,8].
According to the conventional wisdom, all correlation
functions in a simple fluid mixture where particles interact
via short-ranged and Coulomb interactions decay asymp-
totically in the same form, i.e., e−r=λ cosðωr − τÞ=r, and,
crucially, the decay length λ—synonymously the screen-
ing length—and oscillation frequency ω are the same for
all correlation functions [9]. This common decay has been
explicitly verified for the restricted primitive model
(RPM), a simple binary solvent-free electrolyte model
that is paradigmatic in electrolyte physics—it has been
shown that the cation-cation, cation-anion, and anion-
anion correlation functions all decay with the same decay
length and oscillation frequency [10,11], which has also
been used for the interpretation of experiments [12–14].
However, in technological applications, ions are usually
mixed with a solvent in order to enhance conductivity and
reduce viscosity [15–17]. This raises the important ques-
tion of how the presence of solvents influences ion-ion
correlations.

Recent surface force balance experiments show that the
disjoining force between charged surfaces across ionic
liquid-solvent mixtures decays in an oscillatory manner
with an exponentially decaying envelope [14,18,19].
However, as the ion concentration is increased, the oscil-
lation frequency undergoes a steplike transition [14]—at
low ion concentration, it is comparable to the size of the
solvent molecule, whereas for concentrated electrolytes it is
comparable to the size of an ion pair. This is qualitatively
reminiscent of structural crossover in a binary mixture of
“big” and “small” colloids [20–22].However, an ion-solvent
mixture is evidently at least a three component system and a
corresponding mechanism in electrolyte-solvent mixtures
is, perhaps surprisingly, hitherto unknown.
In this Letter, we demonstrate that the decay of corre-

lation functions in a simple fluid mixture is not necessarily
unique; i.e., there is no common asymptotic decay length
and oscillation wavelength. By considering a hard sphere
electrolyte in a hard sphere solvent—one of the simplest
possible extensions of the paradigmatic RPM model that
includes the physics of electrolyte-solvent interactions—
we show theoretically that ion-ion correlations and ion-
solvent correlations can have different asymptotic decay
lengths and support this result using simulations. These
decays are either density- or charge-driven and related to
the length scales of steric and Coulombic interactions.
While ion-solvent correlations are not affected by charge
correlations, ion-ion correlations decay according to a
superposition of both effects. However, asymptotic decay
is determined by the slowest decaying contribution, which
strongly varies with the system composition. Our theory
explains the experimentally observed switch of the struc-
tural force as the crossover from density-driven to
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charge-driven decay [14]. Moreover, it illustrates the
importance of space-filling solvent, an often overlooked
piece of physics in the theoretical modeling of electrolytes.
To concretize ideas, we consider a hard sphere ion-

solvent mixture (HISM) [23–26] throughout this Letter: the
ions and solvent are modeled as hard spheres of the same
diameter d. The ions (solvent) with number density ρ (ρ0)
carry point charges Z� ¼ �e (Z0 ¼ 0). The dielectric
nature of the solvent is modeled by a homogeneous
dielectric background with a relative permittivity ε. The
pair interaction potential between two particles of species ν,
ν0 ∈ fþ;−; 0g at separation r is given by

vνν0 ðrÞ ¼
�∞ r < d

kBTλB
ZνZν0
r r ≥ d;

ð1Þ

where λB ¼ e2=ð4πε0εkBTÞ denotes the Bjerrum length
and kB Boltzmann’s constant.
Figure 1 shows that the HISM model can have two

distinguished coexisting screening lengths at a finite range.
WeperformedMDsimulationsof theHISMin an equilibrated
bulk system using the ESPRESSO package [27,28]. Hard
particle interactions aremodeled using a shifted and truncated
purely repulsive Lennard-Jones potential 4ϵ½ðσ=rÞ12−
ðσ=rÞ6 þ cshift� with ϵ ¼ 104kBT and σ ¼ 2−1=6d. The sim-
ulations are performed in a cubic box of volume V ¼ L ×
L × L with periodic boundaries and L ¼ 30d. We used d ¼
0.3 nm and λB ¼ 0.7 nm, which corresponds to ε ≈ 80 and
T ≈ 300 K. At ionic concentration ρ ¼ 1 M and solvent
concentration ρ0 ¼ 10 M, Fig. 1(a) clearly shows two coex-
isting decay lengths with oscillatory and purely exponential
decay, respectively, at intermediate separations. Figure 1(b)
shows that at a higher solvent concentration ρ0 ¼ 40 M, both
ion-ion and ion-solvent correlations share the same inter-
mediate decay length and oscillation wavelength. Our theory
(see below) predicts that this finite range decay is the same as
the asymptotic decay.
To explain the origin of those coexisting decay lengths,

we turn to a theoretical description of HISM based on the
density functional theory (DFT) formalism [29]. Within
DFT, the free energy is expressed as a functional of one-
body densities [29]. For HISM, we can split the pair
potential into hard core and electrostatic contributions,
vνν0 ¼ vhsνν0 þ vesνν0 . The difference between ideal gas free
energy and the exact free energy can be partitioned into
three components [29],

F ¼ Fhs þ Fes þ Fcorr; ð2Þ
where Fhs is the hard sphere contribution, Fes the electro-
static contribution, and Fcorr a correlation term that contains
remaining contributions. The splitting in Eq. (2), although
mathematically trivial, allows us to identify symmetries in
the corresponding direct correlations chsνν0 , c

es
νν0 , and ccorrνν0 .

The latter follow from a second functional derivative of the
excess free energy with respect to the density, i.e.,

cνν0 ðrÞ ¼ −
1

kBT
δ2F

δρνðr1Þδρν0 ðr2Þ
; ð3Þ

where the homogeneity of the bulk implies r ¼ jr1 − r2j.
The hard sphere contribution depends only on the macro-
scopic packing fraction and the particle diameter d, and
therefore, it scales equally with the number density of each
component. From Fes given by [29]

Fes ¼ 1

2

X
ν

X
ν0

Z Z
ρνðrÞρν0 ðr0Þvesνν0 ðr; r0Þdrdr0 ð4Þ

the electrostatic contribution follows with

(a)

(b)

FIG. 1. Total pair-correlation functions hνν0 ðrÞ for ion concen-
tration ρ ¼ 1 M and concentration of neutral particles
(a) ρ0 ¼ 10 M and (b) ρ0 ¼ 40 M. Symbols represent data from
MD simulations and lines from our theory. For symmetry
reasons, we only show data for the four given combinations of
species. The insets show the same data but plotted on a
semilogarithmic scale. Dashed lines represent the predicted
monotonic decay expð−r=λνν0 Þ with screening length λνν0 from
theory.
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cesνν0 ðrÞ ¼ −
vesνν0 ðrÞ
kBT

: ð5Þ

Hence, ces ≔ cesþþ ¼ −cesþ−. Finally, the correlation term
underlies the fundamental symmetries of the system; i.e.,
positive and negative ions are structurally equivalent such
that ccorrþþ ¼ ccorr−− , ccorrþ− ¼ ccorr−þ , and ccorrþ0 ¼ ccorr−0 ¼
ccorr0− ¼ ccorr0þ .
The decomposition in Eq. (2) entails that the most

general form of the direct correlation matrix C in the
species basis fþ;−; 0g for the HISM model is given by

C ¼

0
B@

chs þ ces þ ccorrþþ chs − ces þ ccorrþ− chs þ ccorrþ0

chs − ces þ ccorrþ− chs þ ces þ ccorrþþ chs þ ccorrþ0

chs þ ccorrþ0 chs þ ccorrþ0 chs þ ccorr00

1
CA:

ð6Þ

To proceed, we need to relate the direct correlation
functions to the total correlation functions hνν0 ¼ ðHÞνν0 ,
the observables in simulations and experiments. We use the
Ornstein-Zernike relation in Fourier space

Ĥ ¼ ð1 − ĈϱÞ−1Ĉ; ð7Þ

where we introduced a number density matrix ϱ ¼
diagðρ; ρ; ρ0Þ, and f̂ denotes the Fourier transformation
of a function f. Substituting Eq. (6) into (7) yields an
algebraic expression for the total correlation matrix Ĥ, the
eigenvectors of which are given by wcc ¼ ð1;−1; 0Þ, wþ

dd,
and w−

dd. The former is equal to one of the eigenvectors of
the RPM and gives rise to the well established charge-
charge correlation hcc ¼ hþþ − hþ− as an eigenvalue [29].
The eigenvectors w�

dd become stationary in the limit of
vanishing ccorrνν0 with (1,1,1) and ð−1;−1; 2Þ; the first of
them gives rise to a density-density correlation, while the
second corresponds to an ion-solvent correlation that has a
vanishing eigenvalue.
In particular, the resulting total charge-charge correlation

function reads

ĥcc ¼
ĉcorrcc þ 2ĉes

1 − ρðĉcorrcc þ 2ĉesÞ : ð8Þ

Transforming it back into real space yields the formal
solution

hccðrÞ ¼
1

2π2r

Z
∞

0

k sinðkrÞ ĉcorrcc þ 2ĉes

1 − ρðĉcorrcc þ 2ĉesÞ dk

¼ 1

2πr

X
q∈Qcc

ℜ

�
Resq

�ðĉcorrcc þ 2ĉesÞq expðiqrÞ
1 − ρðĉcorrcc þ 2ĉesÞ

��
;

ð9Þ

where Qcc contains the roots of

1 − ρðĉcorrcc þ 2ĉesÞ ¼ 0 ð10Þ

with a positive imaginary part. The second equality in
Eq. (9) makes use of the residue theorem and does,
therefore, only hold without further analysis if Eq. (10)
does not have any purely real solutions and the elements of
Qcc are isolated points in the upper complex half plane (we
refer to Refs. [9–11,30] for similar derivations). The
eigenvalues to w�

dd share a common denominator; i.e., they
are a setQdd of singularities corresponding to the roots with
positive imaginary part of the generic equation

1 − ρð2ĉhs þ ĉcorrdd Þ
− ρ0½2ρðĉcorrþ0 Þ2 þ ĉcorr00 ð1 − ρĉcorrdd Þ
þ ĉhsð1 − ρðĉcorrdd − 4ĉcorrþ0 þ 2ĉcorr00 ÞÞ� ¼ 0; ð11Þ

where ccorrdd ≔ ccorrþþ þ ccorrþ− . Note that, Eq. (11) is indepen-
dent of ces.
The dominant contribution to a total correlation function

hνν0 in the asymptotic long-range limit r → ∞ is deter-
mined by the (leading) pole q̄νν0 ¼ ℜ½q̄νν0 � þ iℑ½q̄νν0 � ∈
Qνν0 with the smallest imaginary part [31]. It is convenient
to introduce the decay length λνν0 ¼ 1=ℑ½q̄νν0 � and decay
oscillation frequency ωνν0 ¼ ℜ½q̄νν0 �. This pole causes the
asymptotic decay [9,31,32]

hνν0 ðr → ∞Þ ∝ expð−r=λνν0 Þ cosðωνν0r − τνν0 Þ
r

; ð12Þ

where τνν0 is a phase shift. The pole, however, could be
suppressed on intermediate length scales by a small
amplitude, such that its contribution would become
neglectable. If there are two poles with decay lengths
λ1 > λ2 but amplitudes A1 < A2, pole 2 will dominate until
r≳ logðA1=A2Þ½λ−11 − λ−12 �−1, which is a long length scale
if A1 ≪ A2.
Importantly, two competing decay lengths arise from the

solutions to Eqs. (10) and (11). Switching back into the
species basis yields the central result of this Letter,

λþþ ¼ λþ− ¼ max½λcc; λdd�; ð13Þ
λ0þ ¼ λ0− ¼ λ00 ¼ λdd: ð14Þ

The charge-charge correlation does not affect solvent
correlations, because wcc⊥ð0; 0; 1Þ. Notice that we only
made use of the fundamental symmetries in HISM. In other
words, in general, it is not true that all species correlations
decay with the same decay length. Correlations involving
solvent particles decay on a length scale λdd different from
the charge-charge correlation length scale λcc. If λcc > λdd,
two distinct length scales coexist, as we have shown for
intermediate ranges in Fig. 1(a). The same applies for the
corresponding oscillation frequencies ωcc and ωdd.
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Crucially, this implies that while the dominant decay length
continuously changes, the oscillation wavelength of ion-ion
correlations can rapidly shift.
To illustrate this effect, we proceed by specifying the

functional F in our theoretical framework: we use the
White Bear mark II functional for the hard-sphere con-
tribution [33] and Eq. (5) with vesνν0 ðrÞ ¼ 0 for r < d for the
electrostatic term. By setting ccorr ≡ 0, we obtain analytical
correlation functions that are sufficient to illustrate the
mechanism of the wavelength switch; for the observed
systems, deviations due to this approximation mainly occur
at particle contact, as shown in Fig. 1.
Figure 2 shows quantitative predictions of our theory for

the decay lengths and the oscillation wavelengths in HISM.
The density-induced correlation length, λdd, is a monotonic
function of the macroscopic volume fraction because steric
correlations are enhanced as the system becomes denser.
However, the charge-induced correlation length, λcc, is a
nonmonotonic function of the ion density but independent
of the solvent density. Further, this is the length scale of the
decay of the effective electrostatic potential that an ion

generates. λcc decreases for an increasing ion density in a
dilute electrolyte because ions are surrounded by counter-
ions, and this arrangement progressively screens the elec-
tric field that an ion generates. However, past a threshold
ion concentration, ion-ion correlations lead to a counterion
solvation shell that overcompensates the ionic charge,
which causes a second solvation shell to solvate the
counterions, triggering an oscillatory decay [7]. In this
regime, increasing the ion concentration amplifies ion-ion
correlations; thus the screening length grows. The situation,
when the charge pole that determines λcc changes from
purely imaginary to complex, i.e., the decay changes from
monotonic to oscillatory, is called a Kirkwood transition
[34], and here it coincides with the change between
decreasing and increasing screening length. When
λcc > λdd, which is the case for a large region of RPM’s
parameter space, the ion-ion correlations decay with a
decay length that is the electrostatic screening length but
different from the ion-solvent and solvent-solvent correla-
tions decay (Fig. 2a). For a high solvent concentration,
however, we find a regime λdd > λcc where all species
correlations decay with one common decay length λdd [see
also Fig. 1(b)] but different from the charge-charge decay
length. Thus, the electrostatic screening length must be
distinguished from the decay length of species correlation
functions that is typically observed in experiments.
Although the ion-ion decay length switches continuously

from one pole to another in Figs. 2(a), 2(b) shows that the
corresponding oscillation frequency exhibits a discontinu-
ous jump that occurs when the two leading poles have equal
imaginary but different real parts. This jump is precisely the
effect observed in experimental studies of the surface force
across ion-solvent mixtures [14]—the oscillation wave-
length switches abruptly. In the experiment, ions and solvent
molecules are approximately of the same size, and the
oscillation wavelength jumps from d to 2d, which agrees
squarely with the prediction in Fig. 2(b) (see the
Supplemental Material [35] for a detailed comparison).
Note that, the position of this discontinuous jump in the
oscillation wavelength is different from the onset of charge
oscillations at the Kirkwood transition, when the real part of
the charge pole first takes a finite nonvanishing value
[41,42]. Furthermore, the increase of the decay length in
Fig. 2(a) accurately describes the decay of the structural
force in experiments [14]. However, the experiments show
an additional, much longer decay length at large separations,
which is neither predicted in our theory, and other recent
theoretical studies of underscreening [26,43], nor observed
in our simulations on HISM (see Fig. S2 in [35]). This long-
ranged decay length might arise from a set of additional
poles induced by a mechanism that is not contained in the
simplified HISM model. For instance, dipolar solvent-
solvent interactions, as present in water, could lead to an
additional long decay length. Since this long-ranged decay
is experimentally only observed at long distances, the

(a)

(b)

FIG. 2. Theoretical prediction for (a) decay length and (b) in-
verse oscillation frequency of the leading charge and density
pole, respectively, shown against the ion concentration ρ, for
ρ0 ¼ 10 M and ρ0 ¼ 40 M with d ¼ 0.3 nm and λB ¼ 0.7 nm.
Symbols in (a) mark the decay lengths that correspond to the data
in Figs. 1(a) (square) and 1(b) (circle). Vertical dashed lines mark
points where the asymptotically leading pole changes from
charge to density and vice versa for ρ0 ¼ 40 M; leading inverse
oscillation frequencies for ρ0 ¼ 40 M are highlighted with
bold lines.
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corresponding leading pole should have a small amplitude
and, therefore, could be suppressed at intermediate distances
(see Fig. 1).
The three different regimes of asymptotic decay in

HISM—purely exponential and charge-dominated decay
(A), oscillatory exponentially damped and density-domi-
nated decay (B), and oscillatory exponentially damped and
charge-dominated decay (C)—are summarized in Fig. 3.
While ion-ion correlations in regions A and C are domi-
nated by the charge pole, ion-ion correlations couple to the
solvent in region B. This region appears at high solvent
concentrations between A and C, such that the Fisher-
Widom line [31,44] of the ions shifts towards lower ion
concentrations (away from the Kirkwood line [11,34]).
A second branch separates regions A and C, at which the
frequency jumps from ωdd to ωcc.
Our conclusions are derived by assuming symmetry

between positive and negative ions in Eq. (6). If this
symmetry is broken by different ion sizes, all correlation
functions couple and share the same set of poles; thus they
all decay asymptotically in the same form. However, at
intermediate range, simulations of asymmetric ions still
exhibit the same coexistence of decay lengths and oscil-
lation frequencies, as shown here for the symmetric case
[35]. Consequently, ion size asymmetry can be considered
as a perturbation to the symmetric HISM model so that its
predictions are still valid for decay lengths in asymmetric
systems at (experimentally relevant) intermediate distances.
In summary, we demonstrated the possible coexistence of

two asymptotic decay lengths for hard sphere ions in a hard
sphere solvent. Our theory explains recent experimental
findings concerning a jump of the wavelength of the
structural force in ionic fluids [14], and it sheds new light
on the screening in dense electrolytes and the fitting of
structural forces [19]. Our results are important for the
interpretation of measurements and effective interactions

[19,45–47], because they show that species correlation
functions can be superpositions of charge contributions
and density contributions of the same order of magnitude.
A fit using the asymptotic form (12) cannot be expected to
be accurate on intermediate length scales. Furthermore, the
transition from monotonic to oscillatory decay underpins
wetting phenomena [48,49]. The existence of multiple
coexisting species-dependent decay lengths implies that
addressable wetting could be achieved. Tuning the asymp-
totic correlations may also be used to control colloidal
dispersions, for instance, to prevent aggregation [6] and to
switch effective potentials by tuning the salt concentration
[50]. It might be promising to construct complex interactions
to achieve a rich crossover structure, for instance, in complex
plasmas [51], colloid-polymer mixtures [52], and colloidal
fluids [53].
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