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We consider a quasi-two-dimensional atomic Bose-Einstein condensate interacting with a near-resonant
laser field that is backreflected onto the condensate by a planar mirror. We show that this single-mirror
optical feedback leads to an unusual type of effective interaction between the ultracold atoms giving rise to
a rich spectrum of ground states. In particular, we find that it can cause the spontaneous contraction of the
quasi-two-dimensional condensate to form a self-bound one-dimensional chain of mesoscopic quantum
droplets, and demonstrate that the observation of this exotic effect is within reach of current experiments.
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Ultracold atomic gases have emerged as a unique plat-
form for exploring the rich physics of quantum many-body
systems in and out of equilibrium [1–5]. These new
capabilities are based on the exquisite control of cold
atoms by external fields and in particular the ability to
control and tune atomic interactions. Most prominently, the
use of Feshbach resonances [6], induced by magnetic or
optical fields, makes it possible to vary the strength of zero-
range collisional interactions between cold atoms, which is
essential for their use in quantum simulations. The gen-
eration and control of finite-range interactions is signifi-
cantly expanding the scope of such capabilities and
therefore has been a frontier of cold atom research in
recent years. Among the most promising systems are cold
ion crystals [7], cold molecules [8], Rydberg atoms [9], and
dipolar quantum gases [10], which have led to a number of
recent breakthroughs, from the simulation of quantum spin
models [11–16] to the discovery of exotic quantum-fluid
phenomena [17–19]. Alternatively, effective interactions
can be induced by another quantum system coupled to the
cold atoms. Examples include polaron interactions in
degenerate gases [20–22] and photon-mediated interactions
induced by interfacing atoms with nanoscale photonic
structures [23,24] or optical cavities [25–33]. These and
similar atom-photon interfaces offer unprecedented control
capabilities for the emerging interactions [24,29,33] and
provide a unique platform for observing new phases of
quantum matter [26–28,30,32,34,35] and fascinating col-
lective optomechanical phenomena [36–38].
Here, we consider one of the simplest possible setups,

namely a light field coupled to an atomic gas via a mirror
[see Fig. 1(a)]. We show that such a single-mirror optical
feedback [38–45] induces an unusual type of atomic
interaction that leads to equally exotic collective behavior
of the optically driven quantum gas. In particular, we find
that it can cause the spontaneous contraction of a quasi-
two-dimensional Bose-Einstein condensate (BEC) into a

self-bound one-dimensional chain of mesoscopic quantum
droplets. Despite the simplicity of the setup, the system’s
ground-state phase diagram indicates rich behavior, from
quantum-droplet solutions and the aforementioned droplet
chains to extended density-wave states. The found structures
exhibit an intrinsic emerging length scale and, in contrast
to purely repulsive systems, such as dipolar condensates [17]
or other long-range interacting systems [46–48], are self-
confined and do not rely on external in-plane trapping.
Numerical simulations of the condensate dynamics under
realistic conditions and including scattering-induced atom
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FIG. 1. (a) Schematic illustration of the considered setup in
which a quasi-2D BEC is illuminated by a laser light that is
backreflected by a mirror and thereby generates optical feedback
in the degenerate atoms. The atoms are driven by the incoming
(Êþ) and backreflected (Ê−) light field according to the depicted
level scheme. The resulting multiple light scattering generates an
effective atomic interaction as shown in (b). The blue and green
lines depict the potential for kd ¼ 20 and for d ≫ k−1, respec-
tively, where d is the distance between the BEC and the mirror
and k ¼ 2π=λ is the wave number of the optical field. Panel
(c) shows the potential energy resulting from the average
interaction between two Gaussian clouds separated by a distance
r, both with a rms radius of σ ¼ 0.5. The peculiar form of the
interaction can stabilize a 1D lattice of quantum droplets that is
illustrated in (d), along with the typical lattice spacings. All
graphs use scaled dimensionless units described in the text.
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losses show that such states should be observablewith present
experimental capabilities.
As illustrated in Fig. 1(a), we consider a quasi-2D BEC

placed in front of a mirror [43,44] at a distance d. Incident
laser light propagates through the condensate, is backre-
flected from the mirror, and then traverses the BEC a second
time. It is the optical feedback associated with the second
encounter that can generate a nonlinear effect for the atoms.
In classical terms, the light beam’s effect can be intuitively
understood as follows. As the light field propagates through
the atomic cloud, it imparts an energy shift onto the atoms
and simultaneously acquires a phase shift which depends on
the optical depth and therefore the local density of the atoms.
Diffraction of the beam on its way to and from the mirror
partly converts the beam’s phase modulation into an ampli-
tude modulation. The backreflected modulated intensity
therefore generates a light shift that depends on the atomic
density. This optomechanical nonlinearity was found to
trigger a dynamical instability and pattern formation for
sufficiently high laser intensities [40–43], as observed in
experiments with atomic vapor [38,44].
In order to formulate a quantum theory in the limit of

small light intensities, we describe the forward and back-
ward propagating fields by the slowly varying electric field
operators [49] Ê†

þ and Ê†
−, respectively. These two paraxial

fields couple the electronic ground state jgi of the atoms to
two excited states j�i. This configuration can be realized
by using circularly polarized light and placing a quarter-
wave plate between the BEC and the mirror. In this way, the
two light fields traverse the BEC with opposite circular
polarization and drive separate atomic transitions, thereby
avoiding interference effects. The underlying level scheme,
which can, e.g., be realized with alkaline atoms, is depicted
in Fig. 1(a). Within the rotating wave approximation, the
coupled atom-photon system can be described by the
following Heisenberg equations [50]:

i
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for the two light fields Ê� and the field operators, Ψ̂gðr; zÞ
and Ψ̂�ðr; zÞ, of the condensate atoms in the three respective
electronic states. Here, z defines the light propagation axis
and r ¼ ðx; yÞ, such that ∇2⊥ ¼ ð∂2=∂x2Þ þ ð∂2=∂y2Þ.
Moreover, m denotes the atomic mass, ε0 is the vacuum

permittivity, k is the wave number of the optical field, and
g3D ¼ ð4πℏa=mÞ denotes the strength of the zero-range
interaction between ground-state atoms, due to collisions
with a scattering lengtha. Additional interaction terms due to
collisions involving excited-state atoms can be neglected,
since their density is much smaller than that of the ground-
state atoms, as discussed below. For simplicity, but without
loss of generality [52], we assume equal laser detunings Δ
and dipole matrix elements μ for the two transitions.
For sufficiently large detunings Δ, we can neglect

the kinetic energy in Eq. (1a) and adiabatically eliminate
the excited-state dynamics, which gives Ψ̂� ¼ −ðμ=2ℏΔÞ
Ψ̂gÊ�. Considering a quasi-2D condensate, the remaining

atomic field operator can be factorized as Ψ̂gðr; zÞ ¼
ψ̂ðrÞψ zðzÞ, with

R jψ zðzÞj2dz ¼ 1 [53,54]. We consider a
longitudinal density profile that is finite for 0 < z < lz

[cf. Fig. 1(a)], such that
R lz
0 jψ zðzÞj2dz ¼ 1. Substituting

this expression and the adiabatic solution for Ψ̂� into
Eqs. (1b) and (1c) gives

i
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∂t ¼ −

ℏ
2m

∇2⊥ψ̂ þ g2Dψ̂†ψ̂ ψ̂ þV̂ ψ̂ ; ð2aÞ

i
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where g2D ¼ g3D
R jψ zðzÞj4dz is the quasi-2D interaction

[53,54] and V̂ ¼ ðμ2=4ℏ2ΔÞ R jψ zj2ðÊ†
þÊþ þ Ê†

−Ê−Þdz.
For a sufficiently short longitudinal extent of the BEC,
we can solve the field propagation through the condensate
by neglecting diffraction in Eq. (2b) [43,44] and obtain

Êþðr; zÞ ¼ e−iðkμ
2=2ε0ℏΔÞψ̂†ðrÞψ̂ðrÞ

R
z

0
jψzðz0Þj2dz0 Ê0; ð3Þ

where Ê0 describes the incoming light field. On the
contrary, light propagation between the condensate and
the mirror is entirely determined by diffraction and yields
for the backreflected amplitude at z ¼ lz

Ê−ðr;lzÞ¼
1

2π

Z
ẼþðpÞΦ�ðpÞe−ip·rd2p; ð4Þ

where ẼþðpÞ denotes the Fourier transform of Êþðr;lzÞ,
ΦðpÞ ¼ e2dðik−

ffiffiffiffiffiffiffiffiffi
p2−k2

p
Þ, and d is the distance between the

BEC and the mirror, as indicated in Fig. 1(a). From Eqs. (3)
and (4) we obtain for the last term in Eq. (2a),

V̂ðrÞ¼Ω2

4Δ
þ Ω2

16π2Δ

����
Z
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;
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where Ω ¼ ðμE0=ℏÞ is the Rabi frequency of the incident
field, Γ ¼ ðk3μ2=3πε0ℏÞ denotes the spontaneous decay rate
of the excited states, and fðrÞ ¼ ð1=2πÞ R Φ�ðpÞe−ip·rd2p.
Finally, expanding the exponent in Eq. (5), assuming
ð3πΓ=2k2ΔÞhψ̂†ψ̂i ≪ 1, and rotating out the constant term,
we obtain a closed effective Heisenberg equation for the
atoms,

i
∂
∂t ψ̂ðrÞ ¼ −

1

2
∇2⊥ψ̂ðrÞ þ gψ̂†ðrÞψ̂ðrÞψ̂ðrÞ

þ 2αβ

Z
ψ̂†ðr0Þψ̂ðr0ÞUðr − r0Þd2r0ψ̂ðrÞ; ð6Þ

which contains an induced effective interaction potential
UðrÞ ¼ 2Im½fðrÞ�. We have scaled space and time by

ffiffiffiffiffiffiffiffi
d=k

p
and md=ℏk, respectively, giving the dimensionless param-
eters α ¼ ðmdΩ2=16πℏkΔÞ, β ¼ ð3πΓ=2kdΔÞ, and
g ¼ g2Dðm=ℏÞ. It follows from the above considerations
that the excited-state population is negligibly small as long as
Δ ≫ Ω; thus, ψ̂ can be used as the atomic field operator,
regardless of their electronic state.
The characteristic shape of the interaction is shown in

Fig. 1(b). The potential oscillates with a growing frequency
and a slowly damped amplitude as the interatomic distance
increases. Simple insights can be gained for large mirror
distances d ≫ k−1. In this limit, the interaction potential
takes on the form UðrÞ ¼ − cosðr2=4Þ, which features
persistent oscillations, with consecutive minima at rn ¼ffiffiffiffiffiffiffiffi
8nπ

p
(n ¼ 0; 1; 2;…). Even though this approximation

starts to deviate significantly at large distances, it still
provides a good description of the resulting BEC dynamics,
as we shall see below. This is due to the finite extent of
any emerging density patterns in the BEC, which tends to
smear out such fine long-distance details, as illustrated in
Fig. 1(c). At short distances, the interaction is attractive and
forms a potential well with a length scale ∼

ffiffiffiffiffiffiffiffi
d=k

p
that can

be made significantly larger than the wavelength of the
applied laser field. Interestingly, though, its Fourier trans-
form vanishes at zero momentum such that the induced
interaction potential does not promote phonon excitations
in the Bogoliubov spectrum of the condensate. In practice,
one requires a short distance d in order to reach sufficiently
small length scales

ffiffiffiffiffiffiffiffi
d=k

p
that are compatible with the

typical size of BECs. Experimentally, this can be achieved
by optically projecting a distant mirror into close proximity
of the condensate [50,55].
Within mean field theory, we approximate ψ̂ðr; tÞ ≈

ψðr; tÞ ¼ hψ̂ðr; tÞi by the condensate wave function
ψðr; tÞ that determines the particle density jψðr; tÞj2
[56]. Specifically, we explore the ground states by imagi-
nary time evolution of the underlying Gross-Pitaevskii
equation resulting from Eq. (6) for a fixed particle number
N ¼ R jψðrÞj2d2r. Depending on the two parameters αβN
and gN, we find different ground states [Fig. 2(a)], from an

infinitely extended flat BEC for strong zero-range inter-
actions to a single localized quantum droplet [Fig. 2(e)] for
dominating nonlocal interactions UðrÞ. In between these
limiting cases, there exist two-dimensional regular struc-
tures as exemplarily shown in Fig. 2(g) and one-
dimensional droplet chains as depicted in Fig. 2(f).
The formed quantum droplet is bound by the short-

distance well of the induced interaction potential [Fig. 1(b)]
and therefore has a typical size of ∼

ffiffiffiffiffiffiffiffi
d=k

p
, i.e., of order ∼1

in the used scaled units. As the strength g of the zero-range
interaction increases, the size of the droplet increases
beyond the first minimum of the finite-range interaction
potential, which eventually leads to the formation of richer
structures. Starting from the single-droplet solution, we see
that the one-dimensional droplet chains appear in a sub-
stantial range of parameters in phase diagram [Fig. 2(a)],
and are energetically favored by the long-range interaction
as compared to extended 2D droplet arrays. The particularffiffiffi
n

p
scaling of the location of the nth potential minimum

leads to a local double-peak structure, resembling a dimer
chain, which matches the position of the first few potential
minima as illustrated in Fig. 1(d). The found emergence of
a one-dimensional structure out of a 2D geometry is indeed
remarkable considering the isotropic nature of the inter-
action potential, and can be traced back to its long-ranged
oscillatory form. Upon further increase of g, local repulsion
starts to dominate and eventually leads to a completely
delocalized structureless state with constant density. In
between these two phases, we find two-dimensional struc-
tures with broken translational symmetry in the form of
two-dimensional droplet lattices. Similar to the droplet
chains, each site features a finer structure that emerges from

(a)

(b) (c)

(e) (f) (g)

FIG. 2. (a)–(d) Ground-state phase diagram of the driven BEC,
determined by the competition between the zero-range and finite-
range interaction with strengths g and αβ, respectively. Panels
(b)–(d) provide a closer look at the thresholds beyond which a
new phase can be stabilized. Panels (e)–(g) illustrate the different
solutions and depict the density profile of the (e) single-droplet
state (gN=104 ¼ 0.9), (f) droplet chain state (gN=104 ¼ 1.475),
and (g) droplet lattice state (gN=104 ¼ 1.625) for αβN=103 ¼ 1.
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the particular
ffiffiffi
n

p
scaling of the potential minima, as

discussed above.
Returning to the one-dimensional structure, the size of

the emerging droplet chain is controlled by both interaction
parameters. Upon increasing gN, the droplet chain grows
with a stepwise rising number of sites, as shown in Fig. 3.
Here, ρkðxkÞ is the longitudinal density, obtained by
integrating the 2D density jψðrÞj2 over the coordinate
transverse to the chain axis. As the strength gN of the
local repulsion is increased, the site number grows, alter-
nating between even and odd chain sizes, accompanied by a
gradual decrease of the overall density. Beyond a critical
length, the chain eventually dissolves into the delocalized
state or is replaced by the 2D droplet lattice state discussed
above. By simultaneously increasing the strength αβN of
the light-induced interaction close to this phase boundary,
the chain keeps extending continually and approaches the
thermodynamic limit as N → ∞. Note, however, that a sole
increase of the atom number N for fixed values of αβ and g
drives the system into the Thomas-Fermi limit in which
kinetic energy becomes irrelevant and the formed structure
is entirely determined by the competition of the two
interactions. In this case, the emerging density profile
becomes independent of N and a further increase of the
particle number simply leads to a linear growth of the
overall density.
The kinetic energy, however, drives the transitions

between the different states. Their energy crossings, shown
in Fig. 4(a), indicate that the transitions are of first order.
This is corroborated [50] by the apparent discontinuity of the
average density ρ̄ ¼ N−1

R jψðrÞj4d2r at the transition
points, as well as the multistability and hysteresis behavior
depicted in Fig. 4(b). The appearance of all nontrivial phases
involves a threshold strength of the nonlocal light-induced
interaction. While the formation of the self-bound quantum
droplet only requires a relatively small value of αβN ≈ 0.5
for vanishing local repulsion g ¼ 0 [Fig. 2(b)], the emer-
gence of the droplet chain and droplet lattice states requires
significantly larger values of αβN ≈ 50 and αβN ≈ 675, as
shown in Figs. 2(c) and 2(d), respectively.

In order to explore observable signatures of the described
states in potential experiments, we have studied the real
dynamics of the system under relevant experimental con-
ditions. The main challenge stems from spontaneous
photon emission on the two optically driven transitions,
which causes condensate loss and thereby limits the
observation time. In the considered limit of a large
detuning, the dissipation rate can be determined from
Γsc ¼ ðΓΩ2=2Δ2Þ, i.e., the decay rate Γ multiplied by
the small excited-state population Ω2=2Δ2. Within our
scaled units, the dimensionless condensate loss rate is given
by Γ̃sc ¼ Γscðmd=ℏkÞ ¼ 16kdαβ=3. The corresponding
timescale for condensate loss should be significantly longer
than the typical dynamical time for structure formation. Since
the latter scales with the interaction strength αβN, a high
atomic density provides favorable conditions. Moreover, the
actual parameters are chosen such that jΔj ≫ Γ;Ω; lz < d
and βjψðrÞj2 ¼ ð3π3=2Γ=2k2ΔÞρ0lz ≪ 1 to ensure the val-
idity of the effective theory Eq. (6). In the last inequality, ρ0
denotes the atomic peak density.
These constraints can be satisfied without fundamental

difficulty as demonstrated in Fig. 5, where we show the
dynamics of a quasi-2D rubidium BEC in the presence of
atom losses with a rate Γ̃sc under realistic experimental
conditions [1,54]. The simulations start from an initial
Thomas-Fermi profile [56] jψðt ¼ 0Þj2 ¼ ρ0½1 − ðx2=σ2xÞ −
ðy2=σ2yÞ�e−z2=l2z for the BEC in a harmonic trap. Upon
turning off the in-plane confinement and simultaneously
turning on the driving field Ê0, the system indeed under-
goes a rapid dynamical formation of structures on a
timescale of a few milliseconds before atom loss starts
to significantly deplete the condensate and decrease its

FIG. 3. Longitudinal density profile ρjjðxjjÞ in the droplet-chain
phase with increasing strength g of the zero-range interaction for
αβN=103 ¼ 1.5. All profiles are normalized by the maximum

density ρðmaxÞ
jj at the smallest interaction strength gN=104 ¼ 1.8.

FIG. 4. Ground-state energy E (a) and average density ρ̄ (b) of
the two different indicated solutions as a function of gN for
αβN=103 ¼ 0.5, whereby thick lines mark the ground state and
thin lines otherwise. The corresponding transition, marked by the
vertical dotted line at gN ¼ 6130, is of first order, which leads to
characteristic hysteresis behavior. As illustrated in (b), both
solutions coexist until one of them loses stability at the critical
points marked by the open circles. The apparent drop of the
average density originates from the development of a ring
structure, as illustrated by the two insets that show the amplitude
jψðrÞj for gN ¼ 5500 (left) and gN ¼ 6100 (right). In contrast to
the first-order droplet-chain transition, the ring structure retains
rotational symmetry and emerges through a continuous crossover.
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density. Depending on the initial aspect ratio σx=σy, the
BEC relaxes towards different states that reflect the ground-
state physics discussed above.
In conclusion, we have shown that coupling light to a

BEC within a single-mirror feedback configuration leads to
interesting effective interactions between the atoms. Its
long-range and oscillatory behavior stands out from other
types of interactions that are currently considered in ultra-
cold atomic quantum gases [9,17]. This peculiar shape was
found to cause surprising behavior such as a transition to
one-dimensional chains of quantum droplets from a two-
dimensional condensate. Recently, there has been signifi-
cant work on the formation of quantum droplets and their
regular structures [17,18]. The present 2D system provides
the first instance that promotes such regular structures in a
self-stabilized fashion without external confinement. Our
simulations show that this behavior should be within
experimental reach which, in light of the comparable
technological simplicity of the considered setup, suggests
an intriguing alternative route to long-range interactions in
atomic quantum gases. Given the peculiar nature of the
found effective interactions, the consequences of strong
laser driving beyond the small-phase regime, effects of
strong interactions and quantum fluctuations, as well as the
possibility of supersolidity in the present system all present
exciting future questions to be explored.
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