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The quantum coherence (QC) of two comoving atoms on a stationary trajectory is investigated. We
develop a formalism to characterize the properties of atoms on a stationary trajectory. We give a criterion
under which QC is frozen to a nonzero value. The frozen condition that vanishing super- or subradiant
decay rate is not so sensitive to the initial condition of state. We show that enhanced QC and a subradiant
state can be gained from the initial state.
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Introduction.—QC as a consequence of the quantum
state superposition principle is one of the key features that
results in nonclassical phenomena. It is a powerful resource
in quantum information theory as well as entanglement and
discord-type quantum correlation. Though it is important in
fundamental physics, only recently have relevant steps been
attempted to develop a rigorous framework to quantify QC
for general states; such as the relative entropy of QC and the
l1 norm [1].
A long-standing and significant issue concerning QC is

the decoherence induced by the inevitable interaction
between the system and environment. In the past few
years, several proposals have been suggested for fighting
against the deterioration of QC, for instance, decoherence-
free subspaces [2,3], quantum error correction codes [4],
dynamical decoupling [5], or quantum Zeno dynamics
[6,7]. Recently, the conditions of sustaining long-lived QC
were investigated [8]. It was shown that QC can remain
unchanged with time (freezing coherence) and the frozen
condition (FC) for two qubits undergoing local identical
bit-flip channels with Bell-diagonal initial states was only
dependent on the initial condition of the states [9].
In a realistic physical system, atoms usually cannot be

handled simply as noninteracting individual qubits when
atomic spacing is small. Besides, for an ensemble of atoms,
motion and temperature are also important factors which
should be taken into account. Then, searching for a general
FC for interacting atoms under normal conditions is
necessary in practice.
In this Letter, we investigate the FC of QC for two

identical two-level atoms on a stationary trajectory which
has a characterization that the geodesic distance between
two points on the trajectory depends only on the proper

time interval [10,11]. Thus, for a stationary trajectory, field
correlation function is invariance under translations in time.
Besides, the stationary trajectory guarantees that the atoms
have stationary states. The inertial atom in a Minkowski
vacuum or thermal bath and a uniformly or circularly
accelerated atom viewed by an instantaneous inertial
observer are all stationary. We find that the QC for
interacting atoms on a stationary trajectory can also be
long lived; however, the FC is not so sensitive to the initial
condition of the single excitation state but to the super- or
subradiant decay rate of atoms. We develop a formalism to
describe atoms on a stationary trajectory and give the
general relationship between the quantities characterizing
properties of atoms. Besides, we show that enhanced QC
and the subradiant state can be obtained from the initial
state.
Formalism.—We consider two identical two-level atoms

moving on stationary trajectories xjðτÞ ¼ ðtðτÞ; x⃗jðτÞÞ in a
fluctuating vacuum electromagnetic field, where ðt; x⃗jÞ are
the Minkowski coordinates of atom j referring to an inertial
reference frame and τ denotes proper time of these two
comoving atoms (see Fig. 1). The total Hamiltonian of the
coupled system can be described by H ¼ Hs þHf þHI.
Here, Hs is the free Hamiltonian of atoms, and its explicit
expression in the Schrödinger picture is Hs ¼P

2
j¼1 ω0σ

þ
j σ

−
j , where ω0 is the level spacing of the two-

level atoms, σþj ¼ jejihgjj and σ−j ¼ jgjihejj are, respec-
tively, the raising and lowering operators of the atom j. The
free Hamiltonian Hf with respect to τ takes the form Hf ¼P

kλωk⃗λa
†
k⃗λ
ak⃗λðdt=dτÞ [12]. Here a†

k⃗λ
, ak⃗λ are the creation

and annihilation operators for a photon with momentum k⃗,
frequency ωk⃗, and polarization λ. The Hamiltonian HI that
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describes the atom-field interaction can be written in an ele-
ctric dipole approximation in τ as −e

P
2
j¼1 r⃗j · E⃗½x⃗jðτÞ� ¼

−e
P

2
j¼1ðd⃗jσþj þ d⃗�jσ−j Þ · E⃗½x⃗jðτÞ�, where e is the electron

electric charge, er⃗j is the electric dipole moment for atom j,

d⃗j ¼ hejjr⃗jjgji, and E⃗½x⃗jðτÞ� is the electric field strength
evaluated at the position x⃗jðτÞ. The Hamiltonian in the
Schrödinger picture can be changed to the interaction
picture via a unitary transformation with a unitary operator
U0ðτÞ ¼ exp½−i P2

j¼1 ω0σ
þ
j σ

−
j τ − i

P
kλω⃗kλa

†
⃗kλ
a⃗kλtðτÞ�,

which is the solution to the Schrödinger equation in τ:
iðd=dτÞU0ðτÞ ¼ ðHs þHfÞU0ðτÞ. Then, the atom-field
interaction Hamiltonian in the interaction picture can be
written as

HIðτÞ ¼ −e
X2
j¼1

ðd⃗σþj eiω0τ þ d⃗�σ−j e
−iω0τÞ · E⃗½xjðτÞ�; ð1Þ

where E⃗½xjðτÞ� ¼ U†
0ðτÞE⃗½x⃗jðτÞ�U0ðτÞ and we have let

d⃗1 ¼ d⃗2 ¼ d⃗ for simplicity.
Here, we consider the polarizations of the coupling

photon required by the two atoms only in the same
direction, and for the convenience of calculations, we
assume (i)

G11
ii ðuÞ ¼ G22

ii ðuÞ; G12
ii ðuÞ ¼ G21

ii ðuÞ; ð2Þ

where Gab
ij ðτ−τ0Þ¼h0jEþ

i ½xaðτÞ�E−
j ½xbðτ0Þ�j0i is the electric

field correlation function, and we have decomposed E⃗½xjðτÞ�
in HIðτÞ into positive- and negative-frequency parts:

E⃗½xjðτÞ� ¼ E⃗þ½xjðτÞ� þ E⃗−½xjðτÞ� with E⃗þ½xjðτÞ�j0i ¼ 0

and h0jE⃗−½xjðτÞ� ¼ 0. Under such an assumption, the corre-
lation function is invariant under the exchange of the two
atoms. Thus, there is no difference in the atom-field inter-
action between the atoms, and the external environment for
them is the same. We further assume (ii) that the interaction
between atoms and the field to be weak, so the Wigner-
Weisskopf approximation can be adopted.
Consider the atoms with an initial single excitation state

and field as the vacuum state jφð0Þi ¼ cosðθ=2Þje1g2ij0iþ
sinðθ=2Þjg1e2ij0i. Then, at time τ, the general form of the
state vector can be written as [13,14]

jφðτÞi ¼
X
kλ

bk⃗λ1ðτÞjg1g2ij1k⃗λi þ
X
kλ

bk⃗λ2ðτÞje1e2ij1k⃗λi

þ b1ðτÞje1g2ij0i þ b2ðτÞjg1e2ij0i; ð3Þ

where j1k⃗λi denotes one photon in the mode ðk⃗; λÞ. It is
worth noting that this state is observed in the local inertial
reference frame of atoms.
The state probability amplitudes in (3) can be obtained

(see the Supplemental Material [15]):

b1ðτÞ ¼
1

2

��
cos

θ

2
þ sin

θ

2

�
CþðτÞþ

�
cos

θ

2
− sin

θ

2

�
C−ðτÞ

�
;

b2ðτÞ ¼
1

2

��
cos

θ

2
þ sin

θ

2

�
CþðτÞ−

�
cos

θ

2
− sin

θ

2

�
C−ðτÞ

�
;

ð4Þ

where C�ðτÞ ¼ e−ðA11ð0ÞþB11ð0Þ�A12ð0Þ�B12ð0ÞÞτ. Here, Aabð0Þ
and Babð0Þ can be decomposed as follows:

Aabð0Þ ¼ 1

2
e2did�iG

ab
ii ðω0Þ þ ie2did�iK

ab
ii ðω0Þ;

Babð0Þ ¼ 1

2
e2d�i diG

ab
ii ð−ω0Þ þ ie2d�i diK

ab
ii ð−ω0Þ ð5Þ

with

Gab
ii ð�ω0Þ ¼

Z
∞

−∞
due�iω0uGab

ii ðuÞ;

Kab
ii ð�ω0Þ ¼ −

P
2π

Z
∞

−∞

Gab
ii ðωÞ

ω ∓ ω0

dω: ð6Þ

Here, P denotes the Cauchy principal value. It is worth-
while to note that e2did�iG

11
ii ðω0Þ, e2d�i diG11

ii ð−ω0Þ are the
spontaneous emission rate Γ11

↓ and spontaneous excitation
rate Γ11

↑ of atom 1, respectively [16]. Also, e2did�iG
12
ii ðω0Þ

and e2d�i diG
12
ii ð−ω0Þ can be regarded as the modulation of

the spontaneous emission rate Γ12
↓ [17] and spontaneous

excitation rate Γ12
↑ of one atom due to the presence of another

atom. Here, Γ11
↓ � Γ12

↓ are actually the super- and subradiant
spontaneous emission ratesΓ↓�, respectively [18];Γ11

↑ � Γ12
↑

FIG. 1. Schematic illustration for two identical two-level atoms
comoving on an arbitrary stationary trajectory (AST). The
observer (O) located in the local inertial frame (LIF) of AST
is instantaneous static with respect to the atoms. The coordinate
of atoms ðt; x⃗jÞ is characterized by proper time τ as xjðτÞ ¼
ðtðτÞ; x⃗jðτÞÞ. The observer can also be in a laboratory reference
frame, and the difference is that the total Hamiltonian we have
used should be multiplied by dτ=dt.

PHYSICAL REVIEW LETTERS 121, 073602 (2018)

073602-2



can be, respectively, termed as super- and subradiant sponta-
neous excitation rates Γ↑�. The clear definitions and the
relations between the above quantities are listed in Table I.
Here, e2did�iK

aa
ii ðω0Þ and e2d�i diK

aa
ii ð−ω0Þ represent the

level shift of the upper state and lower state of atom a.
Finally, e2did�iK

12
ii ðω0Þ þ e2d�i diK

12
ii ð−ω0Þ is the dipole-

dipole interaction potential V, which results from photon
exchanges between atoms.
Frozen condition.—Now we apply the previously devel-

oped formalism to investigate QC for two atoms on a
stationary trajectory. For simplicity, we take l1 norm [1] as a
measure of QC, which is defined as Cl1ðρÞ ¼

P
i≠jjρi;jj.

The reduced density matrix ρ obtained by tracing the
density matrix of the total system over the field
degrees of freedom can be written in the basis of the
product states, j1i ¼ je1e2i, j2i ¼ je1g2i, j3i ¼ jg1e2i,
j4i ¼ jg1g2i. Since the state je1e2ij1k⃗λi is only an
intermediate state and short lived, the off-diagonal
elements ρ14 and ρ41 take effect only in short time.
However, we are interested in the long time behavior
of QC, so these cross terms can be neglected. Then, QC
will be simply expressed as Cl1ðρÞ ¼ 2jb1ðτÞb�2ðτÞj ¼
e−Γ

11τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θsin2ð2VτÞ þ ½sinθ coshðΓ12τÞ− sinhðΓ12τÞ�2

p
,

which depends only on ρ23. Here, Γ11 ¼ Γ11
↓ þ Γ11

↑ and

Γ12 ¼ Γ12
↓ þ Γ12

↑ , see Table I.

For the initial subradiant state ðje1g2i − jg1e2iÞj0i=
ffiffiffi
2

p
,

QC will decay exponentially as e−ðΓ11−Γ12Þτ. Then, it can be
frozen to a maximum value 1 only in the case that
Γ11 − Γ12 ¼ 0. When the initial state is a separable state,
that is, je1g2ij0i or jg1e2ij0i, QC will increase from zero
and evolve as e−Γ

11τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ð2VτÞ þ sinh2ðΓ12τÞ

p
. After

evolving for a sufficiently long time τ ≫ 1=Γ11, it is frozen
to 1=2 if Γ11 − Γ12 ¼ 0. Generally, one can find that when τ
is much larger than 1=Γ11 QC will evolve to a nonzero
constant ð1 − sin θÞ=2 (θ ≠ π=2) under the condition
that Γ11 − Γ12 ¼ 0. Such an FC can be rewritten as
Γ↓− þ Γ↑− ¼ 0, which means that the sum of the sub-
radiant spontaneous emission and excitation rate (namely,
subradiant decay rate) should be zero. For inertial atoms in
a Minkowski vacuum, there is no spontaneous excitation
(Γ11

↑ and Γ12
↑ all vanish), and the FC will be simplified to

Γ↓− ¼ 0 such that the subradiant spontaneous emission rate
is null. In the above, we only consider the case that the
subradiant decay rate equals zero under which one can

freeze QC except for the initial state with θ ¼ π=2. Because
this state is a super-radiant state, the QC decays as
e−ðΓ11þΓ12Þτ which can be frozen only when the super-
radiant decay rate vanishes. In physical implementations,
when the super-radiant decay rate vanishes, the subradiant
decay rate will usually vanish too. In such a case, the QC
for the arbitrary initial state will all be frozen.
Thermal bath.—How would the above results have been

modified if the initial state of field were not a vacuum but a
thermal bath described by the density matrix ρ ¼ e−βHf

with β being the inverse temperature? Since the thermal
equilibrium state is a stationary state, the above formalism
can be easily generalized to this case. Following a similar
procedure, it can be found that, for atoms at rest in a thermal
bath, the correlation function in (6) should be replaced by
the thermal Green function Gab

iiβðt − t0Þ which is expr-
essed as hEþ

i ½xaðtÞ�E−
i ½xbðt0Þ�iβ þ hE−

i ½xaðtÞ�Eþ
i ½xbðt0Þ�iβ ¼

TrðρEi½xaðtÞ�Eiðxb½t0Þ�Þ. Then, Γ11 and Γ12 in an initial
vacuum state case are replaced by Γ11

β ¼ Γ11
↓β þ Γ11

↑β and

Γ12
β ¼ Γ12

↓β þ Γ12
↑β, where Γ11

↓β ¼ e2did�iG
11
iiβðω0Þ has the

meaning of a total emission rate including the spontaneous
emission and stimulated radiation rates, Γ11

↑β ¼ e2d�i diG
11
iiβ

ð−ω0Þ has the meaning of the absorption rate [16] and
Γ12
↓β ¼ e2did�iG

12
iiβðω0Þ, Γ12

↑β ¼ e2d�i diG
12
iiβð−ω0Þ can be

regarded as the corresponding modulations.
Now, the FC of QC has to be changed to Γ11

β − Γ12
β

ðor Γ11
β þ Γ12

β Þ ¼ 0. Next, we will simplify this condition.
For the thermal Green function, it can be verified that
Gab

iiβðt − t0Þ ¼ Gba
iiβðt0 − t − iβÞ. Actually, this is Kubo-

Martin-Schwinger (KMS) condition, and the thermal state
is a KMS state. Taking Fourier transforms of the KMS
condition gives

Γab
↓β ¼ eω0βΓab

↑β: ð7Þ

Here, we have utilized Gab
iiβðuÞ ¼ Gba

iiβðuÞ which is equiv-
alent to the assumption (i). Because of the fact that the
commutator of field is a c number, its expectation values
should be independent of the field state:

hfEi½xaðtÞ�; Ei½xbðt0Þ�giβ ¼ h0jfEi½xaðtÞ�; Ei½xbðt0Þ�gj0i:
ð8Þ

TABLE I. Relationship between the quantities characterizing atomic properties. Here, plus/minus denotes the sum or difference of the
previous two terms and D2

ii ¼ e2did�i .

Emission Excitation Plus

Spontaneous transition rates Γ11
↓ ¼ D2

iiG
11
ii ðω0Þ Γ11

↑ ¼ D2
iiG

11
ii ð−ω0Þ Γ11

↓ þ Γ11
↑ ¼ Γ11

Corresponding modulations Γ12
↓ ¼ D2

iiG
12
ii ðω0Þ Γ12

↑ ¼ D2
iiG

12
ii ð−ω0Þ Γ12

↓ þ Γ12
↑ ¼ Γ12

Super-/subradiant rates (plus/minus) Γ↓� ¼ Γ11
↓ � Γ12

↓ Γ↑� ¼ Γ11
↑ � Γ12

↑ Γ11 � Γ12 ¼ Γ↓� þ Γ↑�
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Here f g is used to denote commutator. The Fourier
transforms of this equation leads to

Γab
↓β − Γab

↑β ¼ Γab
↓ : ð9Þ

Note that we have omitted the term Γab
↑ since there is no

spontaneous excitation for static atoms in a Minkowski
thermal bath. Equations (7) and (9) give

Γab
↓β ¼

eω0β

eω0β − 1
Γab
↓ ; Γab

↑β ¼
1

eω0β − 1
Γab
↓ : ð10Þ

Thus, the FC can be simplified to Γ↓− ðor Γ↓þÞ ¼ 0. This
FC is irrelevant to temperature; thus, the presence of a
thermal bath or not does not change the FC of QC for static
atoms. However, if FC is not satisfied, QC will decay faster
as temperature increases since the decay rate is enhanced
ð1þ 2nÞ times compared with the zero temperature case
(see Table II).
Discussion.—Because of the fact that the Hamiltonian

used above is invariant in form under the presence of
boundaries in space, our results are applicable to not only
atoms in free space but also those in bounded space, as long
as assumptions (i) and (ii) are satisfied.
Why can the QC be frozen at a nonzero value? For the

state (3), after a long time evolution, it is usually a single-
photon state, then the measure of QC will be finally zero.
But in an extreme condition, such as when only a
subradiant decay rate vanishes, the state will be a super-
position of je1g2ij0i with a probability of ð1 − sin θÞ=4,
jg1e2ij0iwith the same probability and single-photon state.
The QC is thus preserved. Actually, in such a case, the
system as a whole does not decay any more and evolves
into a steady state. So QC can be frozen.
When the atomic separation is much less than the

resonant radiation wavelength of atoms, that is, the
Dicke limit [19], the subradiant spontaneous emission
and excitation rates will all approach zero, as can be seen
from their definitions. The FC is thus satisfied. For
implementation, the long-wavelength atoms or molecules,
such as Rydberg atoms [20], are appropriate choices.
Another optional strategy is to place the atoms very near

the surface of plates. Because of the fact that the tangential
component of a fluctuating vacuum electric field on the
boundary is null, when the distance from atoms to the
boundary is much less than the resonant radiation

wavelength of atoms and the polarization direction of
atoms is in the surface, the electric field correlation function
will go to zero. Thus, in this case, super- and subradiant
decay rates will all tend to zero, and FC is satisfied.
Next, we take static atoms in free space with polar-

izations along their separation as an example and plot in
Fig. 2. It is shown that when interatomic distance is small
enough compared with the resonant radiation wavelength,
QC is approximately frozen to 1=2. The shorter the atomic
separation r is, the longer the QC lives. If we use LiH with
ω0 ¼ 4.21 × 1013 Hz [21], the frozen case illustrated (blue
dotted line) can be fulfilled by taking r ¼ 1 μm. For RbCs
with ω0 ¼ 1.48 × 1012 Hz [21], r is as large as 28 μm.
If we instead use Rydberg atoms, the required separation
will be largely increased since the wave emitted by
Rydberg atoms can be radio frequency or microwave
(3 × 108 − 3 × 1011 Hz). Then, by shortening the distance
between such atoms, QC will be more precisely frozen and
maintained for a longer time; see the case of R ¼ 0.014.
Now, we consider the situation that these two atoms are

with an acceleration a perpendicular to their separation.
When ða=ω0cÞ ≪ 1, in its first-order approximation, super-
and subradiant decay rates are all enhanced 1þ ða=πω0cÞ
times, and V is approximately unchanged. So the FC is the
same as the static case. Low acceleration does not affect
FC, as the function of a thermal bath. If QC is not totally
frozen, coherence will deteriorate more severely as accel-
eration increases. Taking the initial separable state as an
example, when R ¼ 0.14, Γ11

0↓τ ¼ 10 (Γ11
0↓ is the sponta-

neous emission rate of a static atom) and ða=πω0cÞ ¼ 0.01,

TABLE II. Quantities characterizing the properties of atoms in thermal bath, where n ¼ 1=ðeω0β − 1Þ.

Total emission Absorption Plus

Transition rates of atom 1 Γ11
↓β ¼ ð1þ nÞΓ11

↓ Γ11
↑β ¼ nΓ11

↓ Γ11
β ¼ ð1þ 2nÞΓ11

↓

Corresponding modulations Γ12
↓β ¼ ð1þ nÞΓ12

↓ Γ12
↑β ¼ nΓ12

↓ Γ12
β ¼ ð1þ 2nÞΓ12

↓

Plus=minus ð1þ nÞΓ↓� nΓ↓� Γ11
β � Γ12

β ¼ ð1þ 2nÞΓ↓�
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C
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FIG. 2. Measure of coherence for static atoms with an initial
separable state in free space as a function of Γ11

↓ t and lnðΓ11
↓ tÞ,

respectively. In such a case, the modulation Γ12
↓ ¼ 3Γ11

↓ ðsinR −
R cosRÞ=R3 and the interaction potential V ¼ −3Γ11

↓ ðcosRþ
R sinRÞ=2R3 with R ¼ rω0=c and r being atomic separation. The
blue dotted line is the R ¼ 0.14 case. For comparison, the red
solid line with R ¼ 1 and yellow dashed line with R ¼ 0.014 are
plotted.
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0.05, respectively, the measure of coherence will be
correspondingly 0.4902 and 0.4898, which are all less
than 0.4903 in the static case.
One may wonder why the QC for atoms initially

prepared in a separable state can be created to a nonzero
value. Actually, this can be attributed to the interaction (1)
between atoms and the environment, which makes the tran-
sitions je1g2ij0i⇄je1e2ij1k⃗λi⇄jg1e2ij0i⇄jg1g2ij1k⃗λi⇄
je1g2ij0i possible. For the initial separable state
je1g2ij0i, at the neighborhood of initial time, the proba-

bility of appearing in the state jg1e2ij0i, p1 ¼
e−Γ

11
↓ t½coshðΓ12

↓ tÞ − cosð2VtÞ�=2 increases from zero. The

interference term ρ23, with jρ23j ¼ ffiffiffiffiffiffiffiffiffiffi
p1p2

p
and p2 ¼

e−Γ
11
↓ t½coshðΓ12

↓ tÞ þ cosð2VtÞ�=2 being the probability of
appearing in the state je1g2ij0i, comes up. Since then, the
system evolves into a superposition state, and the QC varies
with the change of the probability distribution of each state.
For a general initial state, the measure of coherence is

j sin θj. It will be less than the frozen value ð1 − sin θÞ=2
ðθ ≠ π=2Þ in the case that sin θ ∈ ð−1; 1=3Þ. Thus for a
initial state in this range, the QC can be enhanced by
engineering the subradiant decay rate. When the subradiant
decay rate is small enough and τ ≫ 1=ðΓ11 þ Γ12Þ, the state
will be a subradiant state, which can be easily found in the
coupled basis fje1e2i; jSi ¼ ðje1g2i þ jg1e2iÞ=

ffiffiffi
2

p
; jAi ¼

ðje1g2i − jg1e2iÞ=
ffiffiffi
2

p
; jg1g2ig. Thus, we can prepare a

subradiant state from initial state except jSi which is
orthogonal to jAi.
Note that the QC enhancement results from the adjust-

ment of probability distribution induced by interaction
rather than the transformation of a basis state space.
Besides, the QC is not inflated, but underestimated,
especially at the beginning of states evolution. The QC
depends on not only the interference term ρ23, but also on
ρ14 which is omitted due to its short time behavior. Then, if
we initially prepare a superposition state of je1g2i and
jg1e2i, after long time evolution of the states, the QC will
still be only encoded on these two states.
What is the relation between QC being investigated and

entanglement [22]? For our X form density matrix, the
concurrence [23] as a measure of entanglement is
Maxf0; 2ðjρ23j − ffiffiffiffiffiffiffiffiffiffiffiffi

ρ11ρ44
p Þ; 2ðjρ14j − ffiffiffiffiffiffiffiffiffiffiffiffi

ρ22ρ33
p Þg [24]. We

can see that the concurrence is not greater than QC,
2ðjρ23j þ jρ14jÞ. But when time is large enough, ρ14 and
ρ11 all approximate zero, concurrence will tend to QC.
Our results can be generalized to a many atoms case. Our

formalism can be used to investigate the decoherence
induced by gravity [25] or explore the structure of
spacetime [26].
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