
 

Hexapartite Entanglement in an above-Threshold Optical Parametric Oscillator
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We demonstrate, theoretically and experimentally, the generation of hexapartite modal entanglement by
the optical parametric oscillator (OPO) operating above the oscillation threshold. We show that the OPO
generates a rich structure of entanglement among sets of six optical sideband modes interacting through the
nonlinear crystal. The class of quantum states thus produced can be controlled by a single parameter, the
power of the external laser that pumps the system. Our platform allows for the generation of massive
entanglement among many optical modes with well defined but vastly different frequencies, potentially
bridging nodes of a multicolor quantum network.
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In the burgeoning field of quantum information science
[1], entanglement is considered to be the greatest resource.
This intrinsic quantum property, studied since the early
days of quantum mechanics [2,3], can be generated in a
number of physical systems and particularly in quantum
optics, owing to the great control over optical systems and
the high fidelity in the measurement of their observables.
One of the workhorses of the field, the continuously

pumped triply resonant optical parametric oscillator (cw
OPO), consists of a nonlinear crystal that couples three
modes within a cavity (Fig. 1). The nonlinear coupling
leads to the creation (and annihilation) of pairs of photons
in down-converted fields (denoted 1 and 2, also known as
signal and idler), with the annihilation (or creation) of a
photon in the pump field 0. Since the pumped nonlinear
crystal acts as a gain medium, when this gain matches the
cavity losses, the system achieves an oscillatory regime
with the generation of intense output beams. Controlling
the pump power, we can explore a broad set of different
quantum states of the field. Examples range from squeezed
states for the down-converted mode [4] and the pump [5] to
bipartite entanglement below [6] and above [7] the oscil-
lation threshold, reaching tripartite entanglement involving
fields spanning more than one octave in frequency [8].
Further steps are typically required to generate more

intricate multipartite entangled states. For instance, off-
cavity combinations of squeezed states and beam splitters
lead to a two-rail cluster state generation in the time
domain, presenting entanglement of more than 10 000
modes defined by multiplexing of a cw OPO output in

time slices of 160 ns [9]. Alternatively, by manipulating the
pairwise generation of entangled states in frequency modes
separated by the cavity free spectral range, quadripartite
entangled states [10], and a frequency comb of 60 modes
separated by 1 GHz [11] were engineered. Multipartite
entanglement was also generated with pulsed OPOs,
leading to entanglement over the wide spectra of its output,
as studied in 10 spectral modes in the range from 790 to
800 nm [12].
In this Letter, we show that, even without resorting to

such techniques, a rich structure of multimode entangled
states is already found in the cw triply resonant OPO
pumped by a monochromatic field, in its operation above
the oscillation threshold (Fig. 1). Starting from a driving
field, with vacuum states for all the other modes, the system
evolves to a hexapartite entangled state. This entanglement
is found in the sideband modes of the intense fields
of the reflected pump and the down-converted beams.

FIG. 1. The optical parametric oscillator consists of one triply
resonant cavity with a nonlinear crystal that is responsible for
coupling the pump field (0) to the signal (1) and idler (2) down-
converted fields.
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These modes are accessed by a combination of electronic
demodulation of the measured photocurrents of the fields,
with the help of empty cavities for each beam in a resonator
detection technique [13]. Hexapartite entanglement is
verified by tests of positivity under partial transposition
[14]. In the following, we present the structure of the
generated entangled states as well as their control by the
pump power.
The evolution of the field operators âðnÞ for each

resonant cavity mode depends on the propagation inside
the cavity, the coupling to external modes through the
mirrors, and their coupling within the nonlinear crystal. The
latter is described by an interaction Hamiltonian

Ĥχ ¼ iℏ
χ

τ
½âð0ÞðtÞâð1Þ†ðtÞâð2Þ†ðtÞ − H:c:�; ð1Þ

where χ is the effective second order susceptibility, τ is the
time of flight through the medium, and field indices 0, 1,
and 2 stand for pump, signal, and idler modes, respectively.
The OPO has been studied in detail for decades [15], and it
is usually treated by the time evolution of these field
operators âðnÞ or by the evolution of the density operator in
a suitable quasiprobability representation. These treatments
lead to an effective three-mode description of the problem.
Nevertheless, a careful analysis of the measurement

technique [16] reveals that the measured state of the output
modes involves information of the two sideband modes
for each carrier field. The role of each individual sideband
is clear if we consider that each annihilation operator
of the field âðnÞðtÞ is associated with the electric field
operator of a propagating wave, which can be described by
the sum of time independent field operators as âðnÞðtÞ ¼
e−iωnt

R∞
−ωn

dΩe−iΩtâðnÞωnþΩ, where âω is the photon annihi-
lation operator in the mode of frequency ω ¼ ωn þΩ, and
the carrier frequencyωn is put in evidence. On the detection
of the output fields, we access the information on the
sideband modes, shifted by Ω from the carrier [13,16].
The interaction Hamiltonian can be rewritten using a

linearized version of the field operators in the rotating
frame, detailing the role of the sideband modes. In this
linearized description, the field operator is replaced by its
mean value αωn

¼ hâðnÞðtÞeiωnti ¼ hâðnÞωn i and a fluctuation
term δâðnÞðtÞ ¼ âðnÞðtÞeiωnt − αωn

. If we retain only the
terms satisfying the rotating wave approximation and
neglect those without the contribution of the intense field
amplitudes αωn

, we have the Hamiltonian involving the
specific sideband modes of the three carriers, with Ω > 0,

ĤχðΩÞ ¼ −iℏ
χ

τ
½α�ω0

ðâð1Þω1þΩâ
ð2Þ
ω2−Ω þ âð1Þω1−Ωâ

ð2Þ
ω2þΩÞ

þ αω1
ðâð0Þ†ω0þΩâ

ð2Þ
ω2þΩ þ âð0Þ†ω0−Ωâ

ð2Þ
ω2−ΩÞ

þ αω2
ðâð0Þ†ω0þΩâ

ð1Þ
ω1þΩ þ âð0Þ†ω0−Ωâ

ð1Þ
ω1−ΩÞ − H:c:�; ð2Þ

where we have discarded the constant term
ðα�ω0

αω1
αω2

−c:c:Þ, which will just introduce a global phase.
Linear terms like α�ω0

αω1
âð2Þω2−Ω were also discarded because

they lead to phase space displacement, which does not
change entanglement properties. Moreover, they will typi-
cally average to zero, since they do not satisfy phase
matching. The total Hamiltonian is given by the sum of
the contributions for each positive frequency Ω, as
Ĥχ ¼

R∞
ϵ ĤχðΩÞdΩ. Therefore, the detailed treatment of

the state of the sideband modes associated with a single
analysis frequencyΩ is decoupled from those of frequencies
Ω0 ≠ Ω [17].
If the evolution of the system could be described just by

the unitary operations in Eq. (2) and the cavity dynamics
without spurious losses, the resulting state would be pure,
with entanglement for each one of the 31 possible biparti-
tions in the above-threshold operation. Nevertheless,
Brillouin scattering of carrier photons by phonons of the
crystal should be taken into account for intense intracavity
fields [18]. From the optomechanical Hamiltonian [19], an
extra contribution to the Hamiltonian of the form below can
be derived

ĤgðΩÞ¼
X2

n¼0

X3

j¼1

−ℏgnj½αωn
ðâðnÞ†ωn−Ωd̂

ðjÞ†
Ω þâðnÞ†ωnþΩd̂

ðjÞ
Ω ÞþH:c:�;

ð3Þ

with d̂ðjÞΩm
as the phonon annihilation operator on the mode

of frequency Ωm in longitudinal and transverse mechanical
modes indicated by index j. It will couple the sideband
modes to different thermal reservoirs of the crystal, thus
degrading purity and entanglement even for perfect
cavities. This phonon coupling appears to be intrinsic to
the system, but it can, in principle, be mitigated by cooling
down the crystal [8].
Therefore, the state of the sidebands depends on the

mean fields and it can be directly related to the normalized
pump power σ [20] for exact resonance, taking the
oscillation threshold as σ ¼ 1. Variation of this single
parameter enables the exploration of this rich structure
of nonclassical fields. Moreover, since only bilinear terms
are involved, the resulting state is Gaussian, as experi-
mentally observed in [21].
Entanglement is directly generated by the two-mode

squeezing operator, associated with the creation and anni-
hilation of photon pairs in different modes, presented in
Eq. (2). This term is the only one remaining in subthreshold
operation, leading to squeezed states or entanglement [4,6],
coupling separate pairs of sidebands (Fig. 2). Above
threshold, as the mean field of the down-converted modes
grows with the increasing pump power, the coupling of the
entangled modes to sidebands of the pump by the beam-
splitter operators will transfer information to these modes
and couple the formerly independent pair of entangled
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states. The system would remain pure, but the coupling to
the phonon modes, and the loss of information in their
reservoirs, degrades information in the system as the power
grows, as can be seen from Eq. (3).
In what follows, we study the OPO described in [17],

using a potassium titanyl phosphate crystal inside a cavity
with a free spectral range of 4.3(5) GHz and finesses of 15
for the pump mode and 125 for signal and idler modes.
Transmittance of cavity mirrors is 30% for the pump and
4% for the infrared couplers. We performed a complete
measurement of the covariance matrix of the Hermitian
quadrature operators ðp̂; q̂Þ of the field, associated with the
annihilation operator â ¼ p̂þ iq̂, for all the six modes
involved, with overall quantum efficiencies of 65% for the
pump and 87% for the infrared [22]. Entanglement in this
system is observed by the analysis of the physicality of the
smallest symplectic eigenvalue ν̃ of the covariance matrix
for a partially transposed density operator of the state [31].
Whenever ν̃ < 1, there is entanglement between the bipar-
titions [22]. Experimental results are presented in Figs. (3)
and (4), confronted with the calculated values derived from
our complete model of the OPO [17] (straight lines)
and those without the phonon coupling (dashed lines).
We have selected five representative cases from the
complete set of results, which can be found in the
Supplemental Material [22].
We begin the analysis by those bipartitions where the

originally entangled modes lie in separate bipartitions, in
Fig. 3. We can take both upper sidebands of signal and idler
in one partition (black), both sidebands of the same field
in one partition (red), or select a single sideband in
one partition (blue). In all these situations, in the absence
of phonons, the symplectic eigenvalue remains nearly
unchanged for growing pump powers. A small change is
observed in the second and third case as the power

increases, indicating a transfer of information to the side-
bands for the pump. Nevertheless, if we include those
sidebands in the selected partition [22], deviations from this
behavior are small.
The situation changes dramatically in the presence of

phonons. The growing coupling of the entangled modes to
thermal reservoirs degrades the entanglement for some
bipartitions, eventually leading to separability [8]. It is
interesting to notice that taking pairs of sidebands of
different beams in the same partition provides a protected
configuration (Fig. 3, black). This situation resembles the
robustness of the twin beam squeezing [32], originated
from the parity in the photon creation in the down-
converted modes. On the other hand, if both sidebands
from the same mode are taken in the same partition, phonon
scattering leads to fast degradation of entanglement (Fig. 3,
red). The difference between these cases can be understood
from the fact that the coupling of each field to a thermal
reservoir implies in correlated noise injected on the side-
bands of that particular field, as a random phase modulation
of the central carrier [18]. If we consider bipartition of the
kind 1u2u × 1l2l, additional noise in mode 1u is correlated
to the noise added in mode 1l; therefore, information in
both partitions remains correlated. The same applies to
modes 2u and 2l. On the other hand, for bipartitions of the
kind 1l1u × 2l2u, fluctuations in mode 1 are not perfectly
correlated to those of mode 2, and this additional noise
degrades the overall correlation, leading to a reduction on
the observed entanglement. It is curious to notice that, if we
take just one of the modes in the partition (Fig. 3, blue), we
have an intermediate situation, since we are comparing it to
a set of modes where just one of them remains strongly
correlated.
The role of the pump sidebands and their coupling to the

entangled pairs remained almost unnoticed in the cases
studied in Fig. 3. However, they have an important effect in

FIG. 2. Coupling of the six sideband modes of the field. Signal
and idler sidebands are coupled by photon pair creation (and
annihilation) operators (double lines). All the other modes are
pairwise coupled by beam-splitter operations (double dashed
lines). Each sideband pair is coupled to thermal reservoirs (Th) by
phonon scattering (straight single lines). Notation: iu (il) stands
for upper (lower) sideband modes at frequency ωi þ Ω (ωi − Ω).
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FIG. 3. Symplectic eigenvalues from the transpositions of
different bipartitions. Experimental results are compared with
the complete model (straight lines) and the model without
phonons (dashed). (Inset) The modes selected for one partition
are marked by the gray shadow.
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other bipartitions for growing pump powers, as can be seen
in Fig. 4. If we separate each pair of entangled modes in
different partitions (Fig. 4, black), we have completely
independent sets while operating below the threshold and
therefore no entanglement between them. Above threshold,
the signal and idler intensities are increased by growing
pump power, and these pairs of modes are coupled to the
pump sidebands [as can be seen in Eq. (2)], which
intermediates the exchange of information between these
two sets. The result is a growing entanglement between
them that can be improved if the sidebands of the pump are
evenly distributed between the bipartitions [22]. In the
absence of phonon scattering, the result would be further
improved, since the down-converted modes would be
coupled to the same reservoir (the pump sidebands), whose
evolution we can follow from the measurement of the pump.
The pump modes become necessarily entangled upon

interaction with the signal and idler modes. In Fig. 4, the
red curve shows the entanglement witness for the partition
involving both pump sidebands. The observed entangle-
ment is consistent with the one observed for an effective
three-mode description of the OPO [8]. Once again, since
the pump modes are coupled to the thermal reservoir of
phonons, it suffers from the uncorrelated noise that is added
to the sidebands and, as seen in the case of the single beam
partition (Fig. 3, red), it is strongly affected in the case
of intense intracavity fields, which grows with the pump
power. The result is quite similar if we take only one of the
sidebands in a 1 × 5 partition, as can be seen in the
Supplemental Material [22].
The modes under study are selected by the choice of

the demodulation frequency in the detection process. They
are characterized by the analysis frequency, limited by the
OPO cavity bandwidth (in the present case, in the range
of 34 MHz), and the bandwidth of the detection or the
measurement rate in the acquisition system (600 kHz).

Different modes can be accessed just by changing the
analysis frequency. All these independent hexapartite
systems are simultaneously generated by a single mono-
chromatic pump field. The present configuration of our
system, detailed in the Supplemental Material [22], pro-
vides at least 20 sets of hexapartite entangled modes, each
set independent from the other.
On the other hand, we can expect that, if multifrequency

pump fields are used, with a frequency separation smaller
than the cavity bandwidth, each intense pump mode can be
treated classically by its mean value, and their fluctuations
will now be coupled in the cavity in a situation similar to
that shown in [11]. It opens the path to generate massive
multipartite entanglement in this system from the multiple
coupling of these hexapartite entangled states. Comparing
to the other approaches [9,11,12], a similar large number of
modes can be entangled. Here, we have the benefit of
entangling sideband modes of carriers with very different
wavelengths, enabling the distribution of quantum informa-
tion over much broader, albeit discontinuous, bandwidths.
In conclusion, we have fully analyzed and characterized

entanglement among six sideband modes in a triply
resonant above-threshold OPO. The choice of the side-
bands under study is done by the choice of the analysis
frequency in the detected photocurrent. The rich structure
of the entanglement generated can be easily controlled by
means of the pump power, providing important flexibility
for this platform. A controllable and scalable source of
entangled states for quantum information tasks can thus be
envisioned. The role of phonon scattering was also inves-
tigated, indicating that, by temperature control of the crystal,
entanglement and purity of the system can be improved.
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