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The relativistic correction to the dissociation energy of H2, D2, and HD molecules has been accurately
calculated without expansion in the small electron-nucleus mass ratio. The obtained results indicate the
significance of nonadiabatic effects and resolve the discrepancy of theoretical predictions with recent
experimental values for H2 and D2. While the theoretical accuracy is now significantly improved and is
higher than the experimental one, we observe about 3σ discrepancy for the dissociation energy of HD,
which requires further investigation.
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Introduction.—There is only one very narrow optical
transition in the hydrogen atom, 1S − 2S, and all the other
transitions have a much broader natural width. This fact
limits the precision of the standard model tests as well as
the accuracy of the Rydberg constant and of the proton
charge radius obtained from hydrogen atom spectroscopy
[1]. Moreover, a different value of the proton charge radius
obtained from the measurement of the 2S − 2P transition in
muonic hydrogen [2–4] indicates severe problems with the
interpretation of high precision spectroscopic results with
the ordinary hydrogen atom [5]. Currently, several projects
are being pursued to measure the Rydberg constant by
other means, for example, from the 1S − 2S transition in a
hydrogenlike helium ion [6,7].
In contrast to the hydrogenlike atoms, there are many

transitions between rotational and vibrational levels in
hydrogen molecules which can, in principle, be measured
very accurately [8–11] because their natural linewidth is
much smaller than that of the hydrogenic excited states.
This opens up the possibility for improved tests of quantum
electrodynamic theory and for the accurate determination
of the electron-proton (deuteron) mass ratio, of the Rydberg
constant, and of the nuclear charge radius.
On the theoretical side, the rovibrational levels in the

hydrogen molecule can, in general, be determined as
accurately as those for atomic hydrogen. For this purpose,
one employs the nonrelativistic quantum electrodynamic
(NRQED) approach based on an expansion in powers of the
fine structure constant [12], which was originally devel-
oped for hydrogenic systems and applied recently in highly
accurate calculations for Hþ

2 [13]. However, calculations
for molecular hydrogen are much more complex and
computationally demanding than those for one-electron
systems, due to the importance of electron correlations.
Nowadays nevertheless, the variational calculations can
reach a precision that does not limit theoretical predictions

for the dissociation energy. In fact, the nonrelativistic
energy has already been calculated with nonadiabatic
James-Coolidge (naJC) functions with numerical precision
of about 10−13 [14,15].
So far, all the determined corrections, i.e., relativistic α4m,

QED α5m, and higher order QED α6m, have been calculated
numerically with explicitly correlated Gaussian (ECG) wave
functions using the Born-Oppenheimer (BO) approximation,
thus omitting the nuclear recoil (nonadiabatic) effect.
Moreover, previous attempts to carry out nonadiabatic
calculations of the relativistic correction [16]were unreliable.
In our former works, we have estimated the nonadiabatic

correction to be of the order of the electron-to-nucleus
mass ratio with the coefficient equal to one and observed
systematic discrepancies with all the recently reported
experimental results for the hydrogen molecule [8].
Because of these discrepancies, we concluded that most
probably relativistic nonadiabatic effects are much larger
than our previous estimate. Indeed, Wang and Yan have
recently calculated a relativistic correction without the BO
approximation [17]. They confirmed the reported discrep-
ancy for the dissociation energy of H2 as coming from
relativistic nonadiabatic effects.
In this work, we develop a method based on ECG

functions together with certain transformations of relativ-
istic operators suitable for the calculation of nonadiabatic
energies to obtain accurate relativistic corrections not only
for H2 but also for D2 and HD. Our results indicate the
importance of the nonadiabatic treatment of the relativistic
correction in the interpretation of high precision spectro-
scopic measurements and, simultaneously, open a route to
significantly increased accuracy of theoretical predictions
for rovibrational levels of the hydrogen molecule.
Nonrelativistic energy from explicitly correlated Gaussian

functions.—The nonrelativistic Hamiltonian for the hydro-
gen molecule as a bound system of four particles is
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H ¼ T þ V; ð1Þ

where (in atomic units)
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2

2
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2
; ð2Þ
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1
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: ð3Þ

Indices 0,1 denote nuclei, and indices 2,3 denote electrons.
The wave function Ψ depends on four particle coordinates
Ψ ¼ Ψðr⃗0; r⃗1; r⃗2; r⃗3Þ. In the center of the mass frame,
p⃗0 þ p⃗1 þ p⃗2 þ p⃗3 ¼ 0, and we may assume that the wave
function Ψ is translationally invariant; i.e., it depends only
on the differences r⃗i − r⃗j. More precisely, we represent the
ground electronic state wave function as

Ψ ¼
XN

i

ciψ iðr⃗0; r⃗1; r⃗2; r⃗3Þ; ð4Þ

ψ i ¼ð1� P0↔1Þð1þ P2↔3Þϕiðr⃗0; r⃗1; r⃗2; r⃗3Þ; ð5Þ

where Pi↔j is the particle exchange operator. In the ground
state of H2 and D2, the wave function is symmetric with
respect to the exchange of nuclear and electronic variables,
whereas in the heteronuclear HD molecule both symmetric
and antisymmetric basis functions are employed. The
functions ϕi in Eq. (5) are the nonadiabatic explicitly
correlated Gaussians (naECG) of the form

ϕ ¼ rn01e
−a1r201−a2r

2
02
−a3r203−a4r

2
12
−a5r213−a6r

2
23 : ð6Þ

In the particular case of an expectation value of a certain
operator, ϕ becomes

ϕ ¼ rn01

�
1þ r23

2

�
e−a1r

2
01
−a2r202−a3r

2
03
−a4r212−a5r

2
13
−a6r223 ; ð7Þ

and exactly satisfies the interelectron cusp condition. This
correct analytic behavior significantly improves numerical
convergence for this operator and is explained later. The
nonlinear a parameters are optimized individually for each
basis function, and the powers of the internuclear coor-
dinate r01 are needed to represent accurately the vibrational
part of the wave function. They are restricted to even
integers and are generated randomly for each basis function
from the log-normal distribution within the limited
0–80 range.
Matrix elements of the nonrelativistic Hamiltonian are

expressed as a linear combination of the following ECG
integrals

fðn1; n2; n3; n4; n5; n6Þ

¼ 1

π3

Z
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Z
d3r2

Z
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2
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2
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with real a parameters. We can distinguish master integrals
that have very simple analytic forms

fðÞ ¼ 1ffiffiffiffiffi
A3

p ; fð−1iÞ ¼
2ffiffiffi
π

p 1

A
ffiffiffiffiffi
Ai

p ; ð9Þ

where all zero valued indices have been omitted, −1i
denotes −1 on the ith position, A1 is the example of a
symbol Ai…k ¼ ∂ai…∂akA, and

A ¼ a1a2a3 þ a1a3a4 þ a2a3a4 þ a1a2a5 þ a2a3a5

þ a1a4a5 þ a2a4a5 þ a3a4a5 þ a1a2a6 þ a1a3a6

þ a1a4a6 þ a2a4a6 þ a3a4a6 þ a1a5a6

þ a2a5a6 þ a3a5a6: ð10Þ
In nonadiabatic molecular calculations, we have an addi-
tional complication due to the presence of the factor rn101
with possible large powers n1. In order to calculate these
integrals, we derive recurrence relations in n1 for integrals
with n1 ≥ 1,

fðn1Þ ¼
A1

2A
ðn1 þ 1Þfðn1 − 2Þ; ð11Þ

and for Coulomb integrals with even n1 ≥ 2,

fðn1;−1iÞ ¼ gðn1;−1iÞ þ hðn1;−1iÞ ð12Þ

g
�
n1;−1iÞ ¼

A1i

2Ai
½fðn1 − 2;−1iÞ

þ ðn1 − 2Þgðn1 − 2;−1iÞ� ð13Þ

hðn1;−1iÞ ¼
A1

2A
½2fðn − 2;−1iÞ

þ ðn1 − 2Þhðn1 − 2;−1iÞ� ð14Þ

where the starting point for these recursions are the integrals
defined in Eq. (9). In the calculations of the kinetic energy,
there are also integrals with even n1 and ni ¼ 2 on the single
positions from i ¼ 2 to 6. If gradients with respect to the
nonlinear parameters are to be used, one needs additional
integrals where arbitrary ni is again increased by 2. All of the
additional recurrence relations with higher ni powers can be
derived explicitly from Eqs. (9), (11), and (12) by differ-
entiation of the above recursions with respect to correspond-
ing a parameters. For calculation of matrix elements with
relativistic operators, ECG integrals with two odd ni are
needed. The master ECG integral fð−1i;−1jÞ is known
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analytically [18]; however, it is difficult to obtain compact
and numerically stable recurrence relations in n1 in this case.
Instead, it is much more efficient to employ a numerical
integration with respect to a corresponding nonlinear param-
eter a, using the quadrature adapted to the end point
logarithmic singularity [19].
The nonrelativistic wave function Ψ has been con-

structed for several basis lengths N ¼ 128, 256, 512,
1024, 2048 to observe the numerical convergence of the
nonrelativistic energy and relativistic matrix elements. The
obtained nonrelativistic energy is in a very good agreement
with the benchmark value calculated with the naJC wave
function [14,15], see Table I, and the corresponding naECG
wave functionΨ is used for the evaluation of the relativistic
correction. In comparison to former works based on a
different representation of ECG functions [20], our non-
relativistic results, obtained with approximately five times
smaller basis set, are more accurate for all hydrogen
molecules H2, D2, and HD, which demonstrates the
effectiveness of our new methods.
Relativistic correction.—The relativistic correction can

be expressed in terms of the expectation value,

Erel ¼ hΨjHreljΨi; ð15Þ

of the Breit-Pauli Hamiltonian,

Hrel ¼ −
1

8
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where index x goes over 0,1 and a over 2,3. The coefficient
δs ¼ 0 for the nuclear spin s ¼ 0 or 1, and δs ¼ 1 for
s ¼ 1=2. In the above formulas, we have omitted all the

electron spin dependent terms because they vanish for the
ground electronic state of 1Σþ

g symmetry. We have omitted
also the p4

x=ð8m3
xÞ terms because their numerical values are

smaller than the uncertainty of the whole relativistic
correction. In order to accurately calculate the expectation
value of Hrel, we use the following expectation value
identities to transform it to a numerically more regular
form,

hΨj4πδ3ðrxaÞjΨi ¼
2mx

1þmx
hΨj 2
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−
X

y

1
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X

b
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ð17Þ
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which hold for the exact wave function Ψ. For an approxi-
mate function Ψ̃, such expectation values are not equivalent,
but the rhs quickly converges in the limit Ψ̃ → Ψ as long as Ψ̃
satisfy proper analytic properties. This feature is especially
important for the p2

2p
2
3 operator in Eq. (18). In this case, the

function ϕ is that given by Eq. (7), and then,

p2
2p

2
3jΨ̃i ¼ ½p̃2

2p̃
2
3 − 4πδ3ðr23Þ�jΨ̃i: ð19Þ

The new term p̃2
2p̃

2
3 (in contrast to p2

2p
2
3) is understood as

the differentiation ∇2
2∇2

3 of Ψ̃ as a function, thus omitting
δ3ðr23Þ. This δ3ðr23Þ term cancels exactly with the same term
in Hrel, so it is not necessary to calculate it [21]. We
nevertheless do so for the comparison with previous results.
Results and discussion.—The relativistic correction to

the dissociation energy D0 is shown in Table II, while
results for individual operators are presented in the
Supplemental Material [22]. Here, D0 differs from the

TABLE I. Convergence of the nonrelativistic energy E (in a.u.) with the size of the naECG basis set. The ‘naJC’
line contains benchmark values obtained with nonadiabatic James-Coolidge wave functions [14,15]. Nuclear
masses used in this work are taken from the 2014 CODATA compilation [1] mp=me ¼ 1836.152 673 89ð17Þ,
md=me ¼ 3670.482 967 85ð13Þ.

Basis EðH2Þ EðHDÞ EðD2Þ
128 −1.164 023 669 155 −1.165 470 991 485 −1.167 167 911 358
256 −1.164 024 987 878 −1.165 471 628 967 −1.167 168 756 439
512 −1.164 025 027 334 −1.165 471 916 621 −1.167 168 805 491
1024 −1.164 025 030 593 −1.165 471 923 256 −1.167 168 808 953
2048 −1.164 025 030 843 −1.165 471 923 906 −1.167 168 809 193
naJC −1.164 025 030 883 1ð3Þ −1.165 471 923 964 38ð3Þ −1.167 168 809 284 0ð1Þ

PHYSICAL REVIEW LETTERS 121, 073001 (2018)

073001-3



expectation values ofHrel by subtraction of the correspond-
ing energy of separated hydrogen atoms,

ErelðHÞ ¼ −
1

8
þ 1

4

�
1

mp

�
2

þO

�
1

mp

�
3

; ð20Þ

and the overall sign. It is worth noting that the term
proportional to 1=mp is not present in the above formula,
so the relativistic recoil correction for separated hydrogen
atoms is very small.
Because of the regularization of relativistic operators

with the use of a variational wave function which exactly
satisfies the electron-electron cusp condition, the total
relativistic contribution has a very good convergence with
the size of the basis set. The extrapolated value is accurate
to about six digits. For comparison, the lower part of
Table II contains the expectation values of the Breit-Pauli
Hamiltonian calculated within the BO approximation. The
“difference” line gives directly the nonadiabatic correction
to the relativistic contribution, and we find that it is several
times larger than the previous estimate [23]. These non-
adiabatic corrections scale approximately with the inverse

of the reduced nuclear mass 1=μ, which is demonstrated by
the straight line in Fig. 1.
Our result for the nonadiabatic relativistic correction in

H2 is in significant disagreement with the earlier result of
−0.5691 cm−1 obtained by Stanke and Adamowicz [16],
which indicates the importance of regularization of rela-
tivistic operators and the use of the 1þ r23=2 prefactor in
the naECG functions.
Table III presents the individual contributions to the

ground state dissociation energy D0. The comparison with
experimental dissociation energies reveals agreement for
H2 and D2 and surprisingly 3σ disagreement for the HD
molecule. To investigate this inconsistency further, we
present in Fig. 1 experimental and theoretical values of
the recoil correction versus 1=μ. The experimental value
for the relativistic nonadiabatic correction is obtained by
subtraction, from the total dissociation energy, of the exact

TABLE II. Convergence of relativistic correction to the dis-
sociation energy D0 (in cm−1) with the size of the naECG basis
set. For comparison, the relativistic correction evaluated with the
BO approximation is also given. The difference corresponds to
the nonadiabatic correction, see also Fig. 1.

Basis H2 HD D2

128 −0.531 427 54 −0.529 979 01 −0.528 337 669
256 −0.531 194 19 −0.529 910 95 −0.528 218 423
512 −0.531 206 99 −0.529 883 50 −0.528 201 146
1024 −0.531 212 77 −0.529 886 61 −0.528 205 416
2048 −0.531 214 84 −0.529 887 30 −0.528 205 935
∞ −0.531 215 6ð5Þ −0.529 887 5ð2Þ −0.528 206 05ð9Þ
BO, [21] −0.533 129ð1Þ −0.531 337ð1Þ −0.529 178ð1Þ
difference 0.001 914 0.001 449 0.000 972

D2

HD

H2

0.0002 0.0004 0.0006 0.0008 0.0010

1
μ

0.0005

0.0010

0.0015

0.0020

0.0025

δ E

FIG. 1. Nonadiabatic relativistic correction to energy, namely,
the difference δE (in cm−1) between the total relativistic energy
and the relativistic energy calculated in the BO approximation as
a function of 1=μ. Analogously, experimental results include
subtraction of all theoretical contributions with a relativistic
correction in the BO approximation. The theoretical values are
represented by blue triangles and the experimental by black
circles.

TABLE III. Current state of the theoretically predicted dissociation energy budget for the ground level of H2, HD, and D2 (in cm−1).

Here, Eð2Þ
rel is a second order correction due to relativistic BO potential, which in former works was automatically included in α4m; FS is

the finite nuclear size correction with rp ¼ 0.84087ð39Þ [3] and rd ¼ 2.12771ð22Þ fm [24].

Contribution D0ðH2Þ D0ðHDÞ D0ðD2Þ Remarks & Refs.

α2m 36 118.797 746 10(3) 36 406.510 891 37(1) 36 749.090 990 99(2) naJC, [14,15]
α4m −0.531 215 6ð5Þ −0.529 887 5ð2Þ −0.528 206 05ð9Þ naECG, this work
α5m −0.194 8ð2Þ −0.196 4ð2Þ −0.198 2ð2Þ BO, [23,25,26]
α6m −0.002 067ð6Þ −0.002 080ð6Þ −0.002 096ð6Þ BO, [12,21]

Eð2Þ
rel ∼ α6m 0.000 008 5 0.000 008 6 0.000 008 6 BO

α7m 0.000 12(6) 0.000 12(6) 0.000 12(6) BO, [12,21]
FS −0.000 031 −0.000 117 −0.000 204 BO, [12,21]
Total 36 118.069 76(21) 36 405.782 54(21) 36 748.362 41(21)
Exp. 36 118.069 62(37) 36 405.783 66(36) 36 748.362 86(68) [27–29]
Exp. 36 118.069 45(31) [30]
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nonrelativistic value and all the other theoretical contribu-
tions evaluated within the BO approximation. Because of
an agreement for H2 and D2, it seems that the experimental
value for the dissociation energy of HD has underestimated
uncertainty.
The theoretical uncertainty of the total dissociation

energy is at present smaller than the experimental one
and is dominated by the contribution from nonadiabatic
QED effects of order α5m, which has been estimated by the
ratio of the electron-to-reduced-nuclear mass with the
coefficient equal to one [23]. Once this correction is
calculated, the uncertainty for the dissociation energy will
be reduced to 6 × 10−5 cm−1 and even better for vibrational
and rotational transitions. Further improvements would
require the calculation of an α7m contribution, which will
open the window for determination of the proton mass from
measurement of a vibrational transition in H2 and even
determination of nuclear charge radii. However, such
calculations are very challenging, and they have not yet
been performed even for atomic two-electron systems.
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