PHYSICAL REVIEW LETTERS 121, 072701 (2018)

Correlations imposed by the unitary limit between few-nucleon systems,
nuclear matter, and neutron stars

A. Kievsky,] M. Viviani,1 D. Logoteta,] L. Bombaci,l’2 and L. Girlanda>*
'stituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, 56127 Pisa, Italy
2Department of Physics, University of Pisa, 56127 Pisa, Italy
*Department of Mathematics and Physics, University of Salento, 1-73100 Lecce, Italy
*Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, 1-73100 Lecce, Italy

® (Received 14 May 2018; revised manuscript received 4 July 2018; published 16 August 2018)

The large values of the singlet and triplet two-nucleon scattering lengths locate the nuclear system close
to the unitary limit. This particular position strongly constrains the low-energy observables in the three-
nucleon system as depending on one parameter, the triton binding energy, and introduces correlations in the
low-energy sector of light nuclei. Here we analyze the propagation of these correlations to infinite nuclear
matter showing that its saturation properties, the equation of state of f-stable nuclear matter, and several
properties of neutron stars, as their maximum mass, are well determined solely by a few number of low-
energy quantities of the two- and three-nucleon systems. In this way we make a direct link between the
universal behavior observed in the low-energy region of few-nucleon systems and fundamental properties

of nuclear matter and neutron stars.
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Introduction.—The unitary limit, characterized by the
divergence of the s-wave two-body scattering length a, is a
critical point in which the two-body system has no scale. As
the system approaches this limit, it presents a continuous
scale invariance. The two-body scattering length appears as
a control parameter: it determines the low-energy observ-
ables with a functional dependence dictated by dimensional
analysis. For identical particles the three-boson system
presents a discrete scale symmetry, governed by the size of
a particular three-body state, and shows the Efimov effect at
the unitary point. The three-boson spectrum is then
determined by the control parameter a and the three-body
parameter k., the binding momentum of the selected state.
All these features, collected in what is now called Efimov
physics, are intensively studied from an experimental [1-4]
as well as a theoretical point of view (for recent reviews, see
Refs. [5,6]). The systems inside this window (the Efimov
window) have many striking properties characterized by
their insensitivity to the particular form of the interaction;
they show universal behavior.

In atomic physics the study of Efimov physics is based
on the experimental ability of tuning the scattering length
using Feshbach resonances. It is interesting to notice that
nuclear physics is naturally close to the unitary limit [7]. In
fact, the deuteron as well as the virtual 'S state are very
shallow two-nucleon systems. The energy scale from which
their energy can be estimated is not directly related to ry,
the range of the nuclear force, but to the two-body
scattering length in the corresponding spin channel:
|Eg| ~ h%/ma%, with S =0, 1 and m the nucleon mass,
where the singlet and triplet scattering lengths @, and a; are
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both large with respect to the typical length of the
interaction ry ~ 1.4 fm.

Recent studies of nuclear systems as Efimov systems can
be found in Refs. [7,8] up to A = 4. It emerges that the
triton, “He, and “He are the lowest Efimov states at the
particular values of the ratio rg/ag, with rg the effective
range. The quantities ag, rg appear as control parameters
and finite size parameters, respectively, whereas the bind-
ing momentum of *H « is the three-body parameter. The
binding energy of “He B(*He) = #%«2/m can be deduced
from the universal ratio x,/kr ~ 1.9, considering the finite
size and Coulomb corrections [7].

The question that we want to discuss here is the
constraints imposed by the location of the nuclear system
close to the unitary limit as they propagate with the number
of particles. In particular we will analyze the saturation
properties of nuclear matter (NM) determined solely by ag,
rg, and k7 and, more important, the equation of state (EOS)
of f-stable nuclear matter and the corresponding properties
of neutron stars (NSs) and particularly of their maximum
mass configuration. In this way we introduce a strict
correlation between a low number of low-energy observ-
ablesin A = 2, 3, 4 systems and the fundamental properties
of NM and NS.

To follow this study we make use of the effective field
theory (EFT) framework with and without pions. In the
latter case (pionless EFT) the leading order (LO) has been
studied in a series of articles [9,10] showing that it consists
of two contact terms plus a contact three-body interaction
needed to stabilize the three-nucleon system against the
Thomas collapse. The pionless EFT is closely connected to
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the pioneering work by V. Efimov more than 40 years ago
[11,12]. The LO parameters of the theory can be used to fix
the low-energy parameters ag and k7 with the consequence
that also the “He binding energy is well reproduced resulting
in an energy per particle of about 7 MeV. This quantity
compares well with the average binding energy per particle
along the nuclear chart of around 8 MeV, having a peak of
approximately 8.8 MeV at the °Fe nucleus. Accordingly, the
pionless LO maintains its character along the nuclear chart
describing correctly the threshold at which nuclei bind
beyond the clusterization on «'s. The binding beyond these
thresholds may well be considered as a higher order effect,
that a LO description need not address in detail. As an
example we can mention the a + d threshold of °Li, the three-
and four-a threshold of '2C and !°0, and so on. Calculations
using pionless two- and three-body potentials beyond the LO
will clarify further this point [13—15].

Correlations imposed by the unitary limit between few-
and many-body systems have been discussed in the context
of EFT in Ref. [16]. Recent studies at LO have been done in
light- and medium-mass nuclei [17-19] and boson systems
[20]. Correlations between the triton and nuclear matter can
be found in Ref. [21]. Clusters of bosons close to the
unitary limit have been studied using a LO EFT-inspired
potential in Refs. [22-25].

The LO EFT-inspired potential.—In the following we
define our LO EFT-inspired potential and fix the associate
low-energy constants from the low-energy data in the two-
and three-body systems. The two-body potential we use,
which includes all LO interactions from EFT and some of
its important finite range corrections, is

V%]g = VSR+VIZ’ (1)

where Vgg is the short-range interaction and V is the one-
pion-exchange potential (OPEP). The short-range interac-
tion is a regularized contact interaction and has a spin
dependence. It can be written as

Vsr = CoVoPor + C1 Vi Py, (2)

where Pgr is a projector onto the total spin-isospin state S,
T of two nucleons. Using a local Gaussian regulator, the
two potentials V|, and V; have the following form:

_ _ —r2/d>
Vs—Vs(r>—”3/—M§€ /% (3)
and V is the regularized OPEP potential
V(r) =1 1) - 6,Y5(r) + S12Tp(r)] (4)
with the central and tensor factors (x = m,r)
2,3 ,—X
gagmyz € 2R
Y(x) = 1 —e /P,
p(x) 12272 (I—e/7)
2,3 ,—X
gam; e 3 3 o
T =T 1+ +5)(1=—e /7)), 5
px) 122F2 x < +x+x2>( ¢ ) (5)

With this choice [26], the two-body potential V¥ has the
form of the LO pionless EFT potential (f — oo) and tends
continuously to the LO potential in chiral perturbation
theory. The strength Cg and range dg are designed to
reproduce the np scattering length and effective range ag
and rg in channels S, 7 = 0, 1 and 1,0 for different values
of the regulator . Because of the shallow character of the
deuteron state and virtual 'S, state, this procedure auto-
matically fixes the correct binding of these two states. We
now extend our analysis to the three- and four-nucleon
systems. The effective potential is

VISP = Ver (i) + Vel D] + Y Wi j. k), (6)

i<j cyclic

where we have considered the possibility of a (regularized)
contact three-body term of the form

W(i.j. k) = Woe i/ e/, (7)

We calculate the *H and “He energies B(*H) and B(*He) for
different values of r5. In each case the strength W/, is fixed to
reproduce B(°*H). The results are shown in Fig. 1 for different
values of the regulator of the OPEP f. As f — oo the LO
pionless theory is recovered while the lowest value f =
1.0 fmis an extreme case, well inside the region f < 1/m,, ~
1.5 fm corresponding to the formation of the OPEP tail.
From the figure we observe that at low values of the range r;
the curves are close to and slightly below the experimental
binding of 28.3 MeV whereas for r; > 3 fm the curve tends
to be above 30 MeV. The f = 1 fm curve remains very stable
and limits the two regions from above (for the lowest r3
values) and from below (for the highest r3 values).

The analysis with equal values of the two-body and
three-body ranges dy = d; = r; has been done in Ref. [26].
Here we vary the three-body range r; independently of the
two-body ranges, fixed in the two-body sector by the
effective range values. The interest of the present study is to
analyze the impact of the low-energy properties ag, rg,
B(*H), and B(*He) in the determination of NM properties.
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FIG. 1. B(*He) as a function of the three-body range r; for
different values of the OPEP regulator f.
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FIG. 2. Energy per particle of SNM E/A as a function of the
nucleonic density p for several combinations of the two- and
three-body interactions.

Taking fixed the two-body parameters and B(*H), the three-
body range r; allows for a simultaneous description of
B(*H) and B(*He). It helps to construct a curve of the
energy per particle of symmetric nuclear matter with a
saturation point as close as possible to the empirical one.
Specifically at f — oo the two-body ranges are dy=1.83 fm,
d; = 1.56 fm, and B(*He) is well reproduced with
ry = 1.5 fm. Instead at f =2 fm, dy=1.54 fm, d;| =
1.39 fm, and r; = 1.7 fm.

Nuclear matter.—We next discuss the application of the
two- and three-nucleon forces, derived in the previous
section, to the case of NM. To calculate the energy per
nucleon E/A of NM we make use of the Brueckner—Bethe—
Goldstone quantum many-body theory (see, e.g., [27,28]
and references therein) considering contributions up to the
two-hole-line level, the so-called Brueckner—Hartree-Fock
(BHF) approximation. The BHF approximation incorpo-
rates in an exact way the two particle correlations via a self-
consistent determination of the G matrix and the single-
particle auxiliary potential U(k), for which we use the
continuous choice [29,30]. As shown in [31,32], the
contribution of the three-hole-line diagrams is minimized
in this prescription indicating a fast convergence of the
hole-line expansion for E/A. In our calculations the three-
nucleon force has been reduced to an effective density
dependent two-body force by averaging over the coordi-
nates (momentum, spin, and isospin) of one of the nucleons
as described in Ref. [33].

The energy per particle E/A of symmetric nuclear matter
(SNM) is shown in Fig. 2 for various parametrizations of
the two- and three-body forces. In each panel, for a fixed
value of the OPEP regulator f of the two-body force, we
show the saturation curve (i.e., E/A as a function of the
nucleonic density p) of SNM obtained using four different

TABLE I. Nuclear matter properties at the calculated saturation
density p, (third column) for different combinations of the

interaction model parameters f and r;. E/A|/,0 is the SNM

saturation energy, EY,, the symmetry energy, L the symmetry

energy slope parameter, and K, the SNM incompressibility.

p r3 Po E/A|/)O E(s)ym L K
(fm) (fm) (fm™) MeV) MeV) (MeV) (MeV)
o0 1.4 0.151 —16.11 35.20 70.2 251
10 1.35 0.150 —15.65 34.92 69.8 251
5 1.25 0.160 —15.80 36.16 71.0 247
2 1.15 0.173 —14.83 36.37 67.9 209
1.8 1.15 0.176 —14.74 36.33 67.0 205
1 1.5 0179 —14.20 35.02 58.5 203

values of the three-nucleon force range r;. The empirical
saturation point of SNM (py = 0.16 £ 0.01 fm™3,
E/Al|, = —16.0 £ 1.0 MeV) is denoted by a yellow box
in each panel of Fig. 2.

The calculated saturation points for the “best” saturation
curve in each panel of Fig. 2 are reported in Table I. We
note that the empirical saturation point of SNM is
adequately reproduced by the first three entries (f = oo,
ry = 1.4 fm), (f = 10 fm, r3 = 1.35 fm), and (f# = 5 fm,
ry = 1.25 fm) in Table 1. For smaller values of S, the
empirical saturation point of SNM cannot be reproduced.
However, even in this case, optimizing the value of the
parameter r3, a reasonable saturation point is obtained (see
the last three entries in Table I).

The calculated saturation points of SNM for various
interaction models are shown in the left panel of Fig. 3.
Here the empirical saturation point is denoted by a yellow
box. Notice that for fixed f, the saturation points of the
various interaction models show an almost linear depend-
ence on the three-nucleon force range r; (the value of r;
increases from the bottom to the top of each line). All
together the calculated saturation points locate a narrow
band, the so-called Coester band [34,35], which for the
interaction models used goes through the empirical satu-
ration point. The hatched zone in this panel collects
calculations in which the two-body and three-body ranges
have been taken equal dy = d; = r3. In this case the two-
body scattering lengths ag and B(*H) have been kept fixed
by proper values of the strengths Cg and W,. These results
give rise to a much broader Coester band, with saturation
points that vary in a much larger range and do not overlap
with the empirical saturation point of SNM contrary to the
calculations in which only the three-body range r; is
varied. These results show the importance of tuning the
r3 parameter.

The nuclear symmetry energy Eqy,,, and particularly its
density dependence, is an important physical quantity
which regulates the properties of asymmetric NM (i.e.,
matter with p,, # p,,, with p,, and p,, being the neutron and
proton densities, respectively). The symmetry energy can
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FIG. 3. Left panel: Saturation points of SNM for the various

interaction models considered in this Letter. Different symbols
represent the saturation point for different values of the OPEP
regulator f of the two-body force. Points with the same symbol
represent the saturation point for different values of the three-
nucleon force range r3 (the value of r; increases from the bottom
to the top of each line). For the explanation of the hatched zone,
see the text. Right panel: Calculated values (points with different
symbols) of Egym and L for the six interaction models reported in
Table I. The gray zone represents the allowed region in the
Egym—L plane, which is compatible with the unitary gas bound
proposed by the authors of Ref. [36].

be obtained [37] taking the difference between the energy
per nucleon E/A of pure neutron matter and the one of
SNM at a given total nucleon number density p = p,, + p,,.
The symmetry properties of NM around the saturation
density p are summarized by the value of ES,, = Egm(po)
and by the value of the so-called symmetry energy slope
parameter

8Esym (/))
o | (8)

Po

L =3p,

It has been shown [38] that a strong correlation between
the values of E‘s)ym and L can be deduced in a nearly model-
independent way from nuclear binding energies. In addi-
tion, it has been recently demonstrated [36] that the unitary
gas limit [39], which can be used to describe low-density
neutron matter, puts stringent constraints on the possible
values of the symmetry energy parameters, excluding an
ample region in the Egym—L plane (the white region on the
left of the line in the right panel of Fig. 3). As pointed out
by the authors of Ref. [36], several EOS models currently
used in astrophysical simulations of supernova explosions
and binary neutron star mergers violate the unitary gas
bounds. Thus the unitary gas model can be used as a novel
way to constrain dense matter EOS in astrophysical
applications [40].

The values of Egym and L calculated for our “best”
interaction models are reported in Table I and are plotted in

TABLE II. Neutron star properties for the maximum mass
configuration for the interaction parameters reported in the first
two columns. M, is the stellar gravitational maximum mass (in
unit of the mass of the Sun Mg = 1.989 x 1033 2), R is the
corresponding radius, and p,. is the central nucleonic density.

B(fm)  ry(fm)  Muy (Mg) R (km)  p. (fm™)
o 1.40 2.52 11.64 0.84
10 1.35 2.52 11.68 0.82
5 1.25 2.46 11.29 0.89

the right panel of Fig. 3. As one can see our calculated Egym
and L are totally compatible with the unitary gas bound (the
gray zone in the right panel of Fig. 3) proposed in Ref. [36].

Next, in the last column of Table I, we report the
incompressibility of SNM

O’E/A
K. = 9/72
0 8,02

©)

Po

at the calculated saturation point for each of the interaction
models listed in Table I. Our calculated values for K, are
in very good agreement with the empirical value K =
210 £ 30 MeV [41] or more recently K =2404+20MeV
[42] extracted from experimental data of giant monopole
resonance energies in medium-mass and heavy nuclei.

Finally, for the three interaction models which reproduce
the empirical saturation point of SNM (the first three entries
in Table I) we have calculated the EOS of -stable NM (see,
e.g., [43,44]) and then integrated the stellar structure
equations in general relativity for nonrotating stars. The
results of our calculations for the stellar maximum mass
configuration are reported in Table II. It should be
noticed that the neutron star matter EOS for the interaction
models listed in Table II are all compatible with present
measured NM masses and particularly with the mass
M =2.01+0.04 Mg [45] of the NS in the pulsar PSR
J0348 + 0432 and M = 2.277017 M, [46] of the NS in the
pulsar PSR J2215 + 5135.

Conclusions.—We have analyzed correlations between
observables in the few-nucleon sector, NM and NSs caused
by the location of the nuclear system close to the unitary
limit. The LO EFT-inspired potential, based on pionless
EFT plus a regularized OPEP term, has been constructed to
describe two-body low-energy observables and the triton
binding energy. The three-body range r; was allowed to
vary, and, in terms of this quantity and for different
regularizations of the OPEP, we have calculated B(*He),
the energy per particle of SNM (and the corresponding
saturation point), the nuclear symmetry energy, its slope
parameter, the SNM incompressibility, and the EOS of f-
stable NM. Unexpectedly, this very simple potential, in
particular for values making the OPEP small, reproduces
many of the mentioned observables. Moreover, the EOS of
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p-stable matter produces neutron star configurations with a
maximum mass compatible with present measured neutron
star masses [45,46]. This analysis indicates that the unitary
limit, which controls the universal aspects of the two-body
physics, introduces severe constraints in the nuclear system
taking priority over the precise description of the two-
nucleon data up to high energies.

Because of the simplicity of the model, the values of r; at
which these results are obtained are slightly smaller than
the best values needed for describing B(*He). The feature
that the requested three-body range be shorter than the two-
body ranges can be understood from the way the contact
interactions are regularized: if the momentum transfers k
and k, of two particles are limited to a range A, the third
one k3 constrained by momentum conservation to be the
sum of the two, may take larger values; with Gaussian

cutoffs its width would be a factor v/2 larger, implying the
necessity of shorter-range ranges for the regularized three-
body contact interaction.

The main result of this study is to put in evidence the
direct connection between many-body observables and the
deuteron and the S = 0 virtual state scales given by ag and
the triton binding energy whose value fixes the strength of
the three-body potential W. This result extends the
analysis of Refs. [7,26] to infinite nuclear systems showing
that fundamental many-body properties are controlled by
the position of the nuclear system close to the unitary limit.
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