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Dynamics of Finite-Temperature Conformal Field Theories
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We apply the operator product expansion inversion formula to thermal two-point functions of bosonic
and fermionic conformal field theories in general odd dimensions. This allows us to analyze in detail the
operator spectrum of these theories. We find that nontrivial thermal conformal field theories arise when the
thermal mass satisfies an algebraic transcendental equation that ensures the absence of an infinite set of
operators from the spectrum. The solutions of these gap equations for general odd dimensions are in general
complex numbers and follow a particular pattern. We argue that this pattern unveils the large-N vacuum
structure of the corresponding theories at zero temperature.
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Introduction.—The description of critical systems in
nontrivial backgrounds requires data not present in the
plane geometry. Perhaps the simplest example is that of
conformal field theories (CFTs) on S}} x R4, with f the
radius of the circle, that describe finite-size or finite-
temperature critical systems. In such a case, the two-point
function of a scalar operator ¢(x) will in principle depend
on the one-point functions of all operators that appear in its
operator product expansion (OPE) with itself, since the
latter can be nonzero. In particular, for an operator O(x)
with dimension A, we schematically have (O(x)) SR &

by/p e, where by is a dimensionless parameter.

In d = 2 the plane is conformally related to the cylinder
and, although one-point functions of conformal primaries
vanish on the latter, there exist operators such as the energy-
momentum tensor which transform anomalously under a
conformal map. This fixes their one-point functions on the
cylinder, and therefore the CFT data on R? determine the
finite-size or finite-temperature corrections to correlation
functions on S x R [1,2].

For d > 2 there is no conformal transformation between
R? and Sy x R*"!, and generically one needs to find other
ways to determine the additional data b. A first step in this
direction was described in Ref. [3], where the leading
anisotropic finite-size corrections to the two-point function
of scalars in R? were connected to the ratio of the thermal
free-energy density of the system and the normalization Cr
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of the energy-momentum tensor two-point function. An
extension of these ideas to the nontrivial 3D O(N) vector
model was performed in Refs. [4,5], where the relevance of
the planar OPE to the description of the finite-size or finite-
temperature CFTs was demonstrated. In the latter works the
crucial point was that parameters such as b, were inde-
pendently determined by the gap equation of the vector
model. In particular, once the bosonic thermal mass was
determined, all one-point functions could be evaluated and
hence the full finite-temperature two-point function could
be reconstructed.

In more recent developments, the improved understand-
ing of CFTs on R using numerical and analytic bootstrap
methods (see Ref. [6] for a recent review) calls for an
extension of these advances to finite-size or finite-temper-
ature critical systems. In this context an interesting work
has recently appeared [7], whose main result is a Lorentzian
inversion formula for the thermal two-point function of a
scalar ¢p(x) with dimension A,. Using the OPE one can
show that the Euclidean position-space [8] thermal two-
point function takes the generic form

r\ 2os CY%(cos @
(WO, = lr.c050) = T a0 (7).

(1)

where x* = (7,x) are coordinates on Sjx R‘"! with
period t~7+f, r = |x|, and 6 € [0, z] is a polar angle
when R?"! is written in spherical coordinates. C%(cos ) are
Gegenbauer polynomials with v = d/2 — 1. The sum in
Eq. (1) runs over all operators O; in the OPE ¢ x ¢ with
spin s and dimension A . The coefficients ap_ are given
by (following the conventions of Ref. [7])
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with Cp and gy,0, the corresponding two- and three-point
function coefficients, and (a), the Pochhammer symbol.
The unit operator 1 is the unique operator with dimension
zero, and here

22A(/,—dr(A¢)

A =—m—>
' AP = Ay)

(3)

so that the momentum-space two-point function is unit
normalized.

Complexifying A, one defines the spectral function
a(A,s) via

—eioo dA C¥(cos 0)
g(r,cos ) Z?{ S)W, (4)

—ico 27Z'l r

whose poles at A = Ay with residues —ap_ yield the
physical spectrum. Assuming that the physical poles lie on
the right of the imaginary axis, one can close the contour
clockwise for r < 1 (we set # = 1 from now on) if a(A, s)
does not grow exponentially at infinity. One can then use
the orthogonality of Gegenbauer polynomials (see, e.g.,
Ref. [9], Sec. 7.313) to project the right-hand side of Eq. (4)
on a spin-s state and then integrate with a suitable power in
the region of convergence r € [0, 1] to obtain a(A,s) as

1 1 dr
a(Bs) =5 | T
< [t -G g(r). (9
-1
where
21—21/ F 2
N,, =+ 2) (6)

(s +)(s+ D)’

This is termed the Euclidean inversion formula in Ref [7].

Writing x = cos @ = (w + 1/w)/2 with w = ¢" one can
transform Eq. (5) into a contour integral over the unit circle
in the complex-w plane. To exploit the analytic structure of
the two-point function g(r, cos 6), one would like to allow
w to explore the full complex plane. This can be done by a
suitable complexification of the Euclidean variables r, 6,
defining z = rw and Z = r/w, which are now independent
real variables. As a function of w, g(r,w) is assumed to
have the cuts (—o0,—1/r), (-=r,0), (0,r), and (1/r, ),
and to grow not faster than w* (1 /w*) for large (small) w
for some constant s,. Moreover, one needs to use the
analytic extension of the Gegenbauer polynomials to the
whole complex plane as

(s +2v)
rWI(s+v+1)

Ci(w) = (Fy(1/w)et™ + F(w)e™7),

(7)

where
Fo(w) =wF (s +2v,u;5 +v+ 1;w?). (8)
Then, the integral giving a(A, s) will receive contributions

from the discontinuities across the cuts of g(r, w) as well as
from the arcs at infinity. The final result is

a(B.5) = agne(A.5) 605y Nas(B5). (9)
where
sacs) =1, [ [ o
o= (1)l z)}] (o)
with
K= G

The discontinuity relevant for the evaluation of Eq. (10) is
the one across the cut (1/r, o), since all others are related
to it.

Gap equations from the inversion formula.—The OPE
inversion formulas are powerful tools when they are
applied to already known correlation functions. In this
context, one needs an ansatz for the thermal two-point
function before applying OPE inversion. For bosons, one of
the simplest choices is to consider the momentum-space
two-point function

1
G (w,,p) = m, (12)
n t

where w, =2zn, n=0,+£1,£2,..., are the bosonic
Matsubara frequencies along the finite direction. Clearly,
Eq. (12) is motivated by known work on thermal field
theory which shows that fields develop generically a
thermal mass my, at finite temperature. From our point
of view we are asking whether the simple ansatz Eq. (12)
can define a thermal CFT. We make no reference to a
Lagrangian, although it is known that Eq. (12) can be
obtained, e.g., in the large-N limit of the O(N) model.
In arbitrary d, Eq. (12) can be Fourier transformed to

My,
d/2 Z (|Xt |> Kd/2—l(mth|Xn|),

n=—00

G (7,x)

X, = (T—n,x), (13)
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where K,(x) is the modified Bessel function of the
second kind. Defining z =17+ i|x|, we have |X,|=
/(n—2)(n—7%). From now on we focus on odd d =
2k+1, k=1,2,..., and in that case we may write [9],
Sec. 8.468, [10]

k e Mnldn
G+ (7,x) 2k+1 - Z IX | X
k-1
Ly,
X 14
pz mth|X | ( )
with
k=14 p)!
22pl(k—1—-p)!

These coefficients also appear in the Bessel polynomials

[11]

ZLer pXl = \/ze PKp12(1/x). (16)

The relevant discontinuity disc(G'?) now follows sim-
ply from understanding the discontinuity of the function

B k—1 Lkp
afz (17)

fR(x) =

across the cut due to the square-root branch point at x = 0.
Assuming that the cut goes from x = 0 to x = o0, it can be
verified that

disc(f®(x)) = % <\/% Ui (x) cos(ay/—x)
+ V(%) sin(a -x)>, (18)
where
Uix) = % s (V) + O (V)
Vi) = 5 [0 (VD) ~ B (~VEL (19

v

with 0, (x) = x"y,(1/x) the so-called reverse Bessel poly-
nomials [12].

Using the results Eqgs. (18) and (19), we can now
calculate Eq. (9). For the discontinuity part we find

1
Gaisco(B:9) = {1+ (=1) ]225+ks!r(k +5 - )

L2 2k — 1 4 5) — n)!
n' (k—1+s—n)!

n=0
X miy Liz_yys_n(e™™™), (20)

in the conventions of Ref. [7], where Li,(z) = >, z"/n*
is the polylogarithm. The result Eq. (20) only pertains to
the leading term in a Z expansion of the quantity under
the integral in Eq. (9) [13], reproducing contributions
of operators with A =d —2 + 5. These are higher-spin
conserved currents saturating the unitarity bound.
Subleading terms in the Z expansion can also be considered

and would lead to expressions that could be denoted by
a((i]fgc.l , agi?c.z’ ..., corresponding to higher-twist operators.
The arc part agfc)s(A, s) is nonzero only for s = 0, and in

that case it needs to be taken into account carefully. We find

1 A A—d+2
e mpl (=5 )P (-=——5—).

(21)

al (A, 0) =

Notice that for mgy =0, only the A =0 term survives,
giving the contribution of the identity operator. This,

along with the corresponding mg, = O contributions from
aé’fﬁc(A, s), yields the spectrum of generalized free CFTs.
When my, # 0 and for A > 0, Eq. (21) yields contributions

of an infinite tower of scalar operators with A=2m,

m=1,2,..., as well as contributions with A=d—-2+42I,
[=0,1,2,.... The former correspond to operators of the
form ¢”, m = 1,2, ..., where o is the shadow of ¢?.

For the latter operators we will first focus on the [ = 0
case, corresponding to the ¢? operator, which appears both
from Egs. (21) and (20). If we demand the absence of this
operator from the spectrum, as required by the fact that it is
substituted by the o operator, then the residue of the A =
d — 2 arc contribution should cancel the s = 0 contribution
in Eq. (20). This turns out to give rise to a condition that
determines mg,, namely,

>~

“L ot (2(k—1) = n)!
n!  (k—=1-n)!

1 1

This is called the gap equation and it is here presented for
any d=2k+1, k=1,2,....

Higher poles in Eq. 21)atA =d-2+21,1=1,2,...,
correspond to scalar operators of the form ¢d*'¢. Such
operators also arise from subleading terms in the Z
expansion of the quantity under the integral in Eq. (9),
from expressions we previously referred to as a((i]ics)c,l,

agfs)cg, .... These operators should also disappear from

the spectrum when the gap equation (22) is satisfied.
Although we have verified this in a couple of cases, we
do not have a general proof for it.

The arc contribution of the identity operator provides a
quick consistency check of our computations. Since the

mg Lizg__,(e™")

Il
o

n
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identity operator has A = 0, we see that the pole associated
with it appears due to I'[—(A/2)] in Eq. (21). For the
residue of that pole, we find

(d-3)2 74
(@) _ 2 é_
Res[aiies (A. 0)] = N r<2 1), (23)

exactly as required to reproduce the correct normalization
of the identity operator in our conventions—for this we
need to take into account a; from Eq. (3) and recall that we
are working in conventions where the 1/2%+!z* in Eq. (14)
has been rescaled away.

It is also possible to study finite-temperature fermionic
two-point functions using the inversion formula. The
simplest case to consider is the singlet projection of the
two-point functions of Dirac fermions y;(x), y;(x) in odd
dimensions,

_ C%(cos 0)
w00 = arc050) = ao (7)™ 2,
O, #1
(24)
with A, = Ay + 1/2. We denote by i, j = 1,2, ...,24=D/2

the spinor indices. Notice that Eq. (24) vanishes at zero
temperature, which means that the unit operator is absent
in the finite-temperature OPE. The corresponding unit-
normalized momentum-space two-point function is

() SR L S
GOonp) = ey 2)
where the fermionic Matsubara frequencies are w, =
2z(n+1/2), n=0,+1,+2,.... The propagator Eq. (25)
vanishes for 7y, = 0, so we will only consider /gy, # 0
in the fermionic case from now on. The calculations
follow closely the bosonic case—e.g., it is known that
fermionic Matsubara sums reduce to a linear combination
of bosonic ones. We then notice that by virtue of the
relationship A, = A, + 1/2, the fermionic formulas can
all be obtained from the bosonic ones by the simple shift
A — A — 1. The arc contributions in the fermionic case are

thus given by
1 s A-1
s ()

« r(- #), (26)

relevant for operators of dimension A =2m 4+ 1 and
A=d-142m, m=0,1,2,.... The former are contri-
butions that do not arise from the discontinuity part, having
the form 6™ with & the shadow field of . Note that, as
expected, there is no contribution from the unit operator.

a9 (A, 0) =

The latter provide contributions from operators of the form
wO*™y that coincide with those coming from the disconti-
nuity. The fermionic gap equation is the condition for the
cancellation of the latter operators from the spectrum, and it
reads

k=1
201 [2(k = 1) — n]! 41 _
g Ligg_y_, (—e™")
Zenl (k—1-n)!
1 1
=———mdT(—k+=). (27)
NG 2

Discussion.—One of the messages of this work is that
OPE inversion formulas can reveal the nontrivial dynamics
of finite-temperature CFTs. In the simple examples we have
studied, the dynamics effect a rearrangement in the operator
spectrum which is ensured by the gap equations (22) and
(27). An analysis of the gap equations shows that their
solutions follow a pattern which, as we will argue below, is
intimately related to the vacuum structure of scalar and
fermionic theories near even dimensions.

In the bosonic case the gap equation (22) in d = 3 reads

—my, = 2log(1 — e™™n), (28)
with the well-known solution

_ 1 5
(d=3) _ 2log< +2\/_

m ) ~096242.  (29)

In d =5 the gap equation becomes [14]

1
—gmsh = Li3(€_mlh) + mthLiz(e_m‘h). (30)
This has a complex conjugate pair of solutions given
numerically by

m{= ~ 1.17431 % 1.19808i. (31)

In fact, we find that for d = 3,7, 11, ..., the bosonic gap
equation (22) has a unique real solution for my and
complex solutions that come in conjugate pairs, except
in the case d = 3, where there are no complex solutions. To
give another example, in d = 7 we find a real and a pair of
complex conjugate solutions. For d =5,9,13, ..., we do
not find any real solutions, and the gap equation only has
pairs of complex conjugate solutions. In d = 5 we only find
the solutions Eq. (31), while in d = 9 we find four complex
conjugate pairs of solutions. Notice also that my, = 0 is
never a solution of the bosonic gap equations.

The fermionic gap equations in d =3, 5 are given,
respectively, by [14]

i3, = 2 log(1 + ), (32)
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1 L i o i
_gm:‘h = figLiz(—e™™) + g Liy (—e™™).  (33)

For d = 3 and 7y, # 0, Eq. (32) has only a pair of complex
conjugate imaginary solutions mflj’ =) = o7 /3. For d=35,
Eq. (33) has a pair of opposite real solutions, as well as a
pair of complex conjugate imaginary ones which can be
found numerically. This pattern continues to higher dimen-
sions; namely, ford = 7,11, 15, ... there is no real solution
to the corresponding fermionic gap equation, while for d =
9,13,17, ... there is always a pair of opposite real solutions
and an increasing number of complex conjugate ones.
The above pattern for the solutions of bosonic and
fermionic gap equations for all odd d fits nicely with a
renormalization-group understanding of universality
classes of scalars and fermions in general dimensions. In
the bosonic case the standard lore is that the large-N
universality class for scalarsind =2k + 1, k= 1,2, ...,1s
accessible via the & expansion starting from d = 2k + 2.
Using the general-d large-N results of Refs. [15-22], this
has been verified in specific cases in Refs. [23-25]. The key
ingredient in such studies is the Hubbard-Stratonovich
transformation, which introduces a field ¢ via the classi-
cally marginal interaction o¢>. This way ¢ has dimension
A, =2 1n all d, and the scalars ¢ can be integrated out
resulting in an effective potential for o of the general form

V(o) ~ Trylog(=0° + ) + g0 4 (34)

where g, is some critical dimensionless coupling. For
general d the effective potential can also receive contribu-
tions from terms involving derivatives of o, but the term
6%/? is universal. Performing the Tr,log calculation in
d — € one finds that for d = 4,8, 12, ... there is a resulting
contribution of the form /2 log 62, which is positive and
dominates for large ¢. Thus, besides possible local minima,
the effective potential has a global minimum. On the other
hand, for d = 6,10, 14, ... the term ¢%? leads to an
unbounded potential, and hence to the absence of a global
minimum, regardless of the sign of the Tr, log contribution.
This matches exactly the pattern we see for my,. A real my,
implies a global minimum, while a complex my, signals
unstable local extrema with nonzero decay width.

In the fermionic case our results are consistent with the
understanding that the corresponding large-N universality
classesind =2k + 1, k=1,2, ..., are also accessible via
the e expansion starting from a generalization of the Gross-
Neveu-Yukawa model to d = 2k 4 2 [26]. The correspond-
ing Hubbard-Stratonovich transformation introduces the
field & via the classically marginal interaction & i y. Here,
6 has dimension A; =1 in all d, and integrating out the
fermions leads to an effective potential of the form

Veff<5-) ~ _Trd IOg(ﬁ + 6) + g*a.d 4 (35)

Notice that the Tr, log term enters with the opposite sign
compared to the bosonic case. In this case the universal
term &7 gives always a bounded from below contribution
(recall d is even). However, the Tr, log term alters the form
of the effective potential in d — ¢. More specifically, for
d=4,8,12, ..., this term gives a negative contribution that
dominates at infinity leading to an unstable vacuum
structure, while for d = 6,10, 14, ..., it gives a positive
contribution that guarantees the presence of a global
minimum. In either case there can be a number of unstable
extrema. This matches exactly the pattern for the 7y,
solutions to the fermionic gap equations.

To summarize, OPE inversion formulas applied to CFTs
in nontrivial geometries reveal crucial dynamical properties
of critical systems at the level of the operator spectrum. The
consistency of the lift to the nontrivial geometry requires
that CFTs develop thermal masses that solve a gap
equation. Remarkably, these thermal masses also encode
information about the vacuum structure of CFTs even at
zero temperature.

We would like to thank E. Perlmutter, J. Plefka,
K. Siampos, and T.N. Tomaras for useful discussions
and communications. A. C. P. wishes to acknowledge the
hospitality of the CERN Theory Division throughout the
completion of this work.

[1] J.L. Cardy, Nucl. Phys. B270, 186 (1986).

[2] H. W.J. Blote, J.L. Cardy, and M. P. Nightingale, Phys.
Rev. Lett. 56, 742 (1986).

[3] J. L. Cardy, Nucl. Phys. B290, 355 (1987).

[4] A.C. Petkou and N.D. Vlachos, Phys. Lett. B 446, 306
(1999).

[5] A.C. Petkou and N. D. Vlachos, arXiv:hep-th/9809096.

[6] D. Poland, S. Rychkov, and A. Vichi, arXiv:1805.04405.

[7] L. Hliesiu, M. Kologlu, R. Mahajan, E. Perlmutter, and D.
Simmons-Duffin, arXiv:1802.10266.

[8] For the corresponding momentum-space expression, see
Refs. [4,5].

[9] 1. S. Gradshteyn and I.M. Ryzhik, Table of Integrals,
Series, and Products, 8th ed. (Academic Press, New York,
2015).

[10] In the conventions of Ref. [7] the normalization 1/25+1z* in
Eq. (14) is rescaled away.

[11] H.L. Krall and O. Frink, Trans. Am. Math. Soc. 65, 100
(1949).

[12] E. Grosswald, Bessel Polynomials (Springer-Verlag, Berlin,
1978).

[13] This is denoted by the subscript “0.”

[14] E.G. Filothodoros, A.C. Petkou, and N.D. Vlachos,
arXiv:1803.05950.

[15] A.N. Vasil’ev, Yu.M. Pis’mak, and Yu.R. Khonkonen,
Theor. Math. Phys. 46, 104 (1981).

[16] A.N. Vasil’ev, Yu.M. Pis’mak, and Yu.R. Khonkonen,
Theor. Math. Phys. 47, 465 (1981).

[17] A.N. Vasil’ev, Yu. M. Pis’mak, and Yu.R. Khonkonen,
Theor. Math. Phys. 50, 127 (1982).

071602-5


https://doi.org/10.1016/0550-3213(86)90552-3
https://doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1016/0550-3213(87)90192-1
https://doi.org/10.1016/S0370-2693(98)01530-5
https://doi.org/10.1016/S0370-2693(98)01530-5
http://arXiv.org/abs/hep-th/9809096
http://arXiv.org/abs/1805.04405
http://arXiv.org/abs/1802.10266
https://doi.org/10.1090/S0002-9947-1949-0028473-1
https://doi.org/10.1090/S0002-9947-1949-0028473-1
http://arXiv.org/abs/1803.05950
https://doi.org/10.1007/BF01030844
https://doi.org/10.1007/BF01019296
https://doi.org/10.1007/BF01015292

PHYSICAL REVIEW LETTERS 121, 071602 (2018)

[18] K. Lang and W. Riihl, Z. Phys. C 50, 285 (1991). [23] L. Fei, S. Giombi, and L. R. Klebanov, Phys. Rev. D 90,

[19] K. Lang and W. Riihl, Nucl. Phys. B402, 573 (1993). 025018 (2014).

[20] K. Lang and W. Riihl, Nucl. Phys. B400, 597 [24] L. Fei, S. Giombi, I.R. Klebanov, and G. Tarnopolsky,
(1993). Phys. Rev. D 91, 045011 (2015).

[21] A. Petkou, Ann. Phys. (N.Y.) 249, 180 (1996). [25] J. A. Gracey, Phys. Rev. D 93, 025025 (2016).

[22] A.C. Petkou, Phys. Lett. B 359, 101 (1995). [26] J. Zinn-Justin, Nucl. Phys. B367, 105 (1991).

071602-6


https://doi.org/10.1007/BF01474081
https://doi.org/10.1016/0550-3213(93)90119-A
https://doi.org/10.1016/0550-3213(93)90417-N
https://doi.org/10.1016/0550-3213(93)90417-N
https://doi.org/10.1006/aphy.1996.0068
https://doi.org/10.1016/0370-2693(95)00936-F
https://doi.org/10.1103/PhysRevD.90.025018
https://doi.org/10.1103/PhysRevD.90.025018
https://doi.org/10.1103/PhysRevD.91.045011
https://doi.org/10.1103/PhysRevD.93.025025
https://doi.org/10.1016/0550-3213(91)90043-W

