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We apply the operator product expansion inversion formula to thermal two-point functions of bosonic
and fermionic conformal field theories in general odd dimensions. This allows us to analyze in detail the
operator spectrum of these theories. We find that nontrivial thermal conformal field theories arise when the
thermal mass satisfies an algebraic transcendental equation that ensures the absence of an infinite set of
operators from the spectrum. The solutions of these gap equations for general odd dimensions are in general
complex numbers and follow a particular pattern. We argue that this pattern unveils the large-N vacuum
structure of the corresponding theories at zero temperature.
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Introduction.—The description of critical systems in
nontrivial backgrounds requires data not present in the
plane geometry. Perhaps the simplest example is that of
conformal field theories (CFTs) on S1β ×Rd−1, with β the
radius of the circle, that describe finite-size or finite-
temperature critical systems. In such a case, the two-point
function of a scalar operator ϕðxÞ will in principle depend
on the one-point functions of all operators that appear in its
operator product expansion (OPE) with itself, since the
latter can be nonzero. In particular, for an operator OðxÞ
with dimension ΔO we schematically have hOðxÞiS1β×Rd−1 ∝
bO=βΔO , where bO is a dimensionless parameter.
In d ¼ 2 the plane is conformally related to the cylinder

and, although one-point functions of conformal primaries
vanish on the latter, there exist operators such as the energy-
momentum tensor which transform anomalously under a
conformal map. This fixes their one-point functions on the
cylinder, and therefore the CFT data on R2 determine the
finite-size or finite-temperature corrections to correlation
functions on S1β ×R [1,2].
For d > 2 there is no conformal transformation between

Rd and S1β ×Rd−1, and generically one needs to find other
ways to determine the additional data bO. A first step in this
direction was described in Ref. [3], where the leading
anisotropic finite-size corrections to the two-point function
of scalars in Rd were connected to the ratio of the thermal
free-energy density of the system and the normalization CT

of the energy-momentum tensor two-point function. An
extension of these ideas to the nontrivial 3D OðNÞ vector
model was performed in Refs. [4,5], where the relevance of
the planar OPE to the description of the finite-size or finite-
temperature CFTs was demonstrated. In the latter works the
crucial point was that parameters such as bO were inde-
pendently determined by the gap equation of the vector
model. In particular, once the bosonic thermal mass was
determined, all one-point functions could be evaluated and
hence the full finite-temperature two-point function could
be reconstructed.
In more recent developments, the improved understand-

ing of CFTs on Rd using numerical and analytic bootstrap
methods (see Ref. [6] for a recent review) calls for an
extension of these advances to finite-size or finite-temper-
ature critical systems. In this context an interesting work
has recently appeared [7], whose main result is a Lorentzian
inversion formula for the thermal two-point function of a
scalar ϕðxÞ with dimension Δϕ. Using the OPE one can
show that the Euclidean position-space [8] thermal two-
point function takes the generic form

hϕðxÞϕð0Þiβ ≡ gðr; cos θÞ ¼
X
Os

aOs

�
r
β

�
ΔOs Cν

sðcos θÞ
r2Δϕ

;

ð1Þ

where xμ ¼ ðτ;xÞ are coordinates on S1β ×Rd−1 with
period τ ∼ τ þ β, r ¼ jxj, and θ ∈ ½0; π� is a polar angle
whenRd−1 is written in spherical coordinates.Cν

sðcos θÞ are
Gegenbauer polynomials with ν ¼ d=2 − 1. The sum in
Eq. (1) runs over all operators Os in the OPE ϕ × ϕ with
spin s and dimension ΔOs

. The coefficients aOs
are given

by (following the conventions of Ref. [7])
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aOs
¼ s!

2sðνÞs
gϕϕOs

bOs

COs

; ð2Þ

with COs
and gϕϕOs

the corresponding two- and three-point
function coefficients, and ðaÞn the Pochhammer symbol.
The unit operator 1 is the unique operator with dimension
zero, and here

a1 ¼
22Δϕ−dΓðΔϕÞ
πd=2Γðd

2
− ΔϕÞ

; ð3Þ

so that the momentum-space two-point function is unit
normalized.
Complexifying Δ, one defines the spectral function

aðΔ; sÞ via

gðr; cos θÞ ¼
X
s

I
−ϵþi∞

−ϵ−i∞

dΔ
2πi

aðΔ; sÞC
ν
sðcos θÞ
r2Δϕ−Δ

; ð4Þ

whose poles at Δ ¼ ΔOs
with residues −aOs

yield the
physical spectrum. Assuming that the physical poles lie on
the right of the imaginary axis, one can close the contour
clockwise for r < 1 (we set β ¼ 1 from now on) if aðΔ; sÞ
does not grow exponentially at infinity. One can then use
the orthogonality of Gegenbauer polynomials (see, e.g.,
Ref. [9], Sec. 7.313) to project the right-hand side of Eq. (4)
on a spin-s state and then integrate with a suitable power in
the region of convergence r ∈ ½0; 1� to obtain aðΔ; sÞ as

aðΔ; sÞ ¼ 1

Ns;ν

Z
1

0

dr
rΔ−2Δϕþ1

×
Z

1

−1
dxð1 − x2Þν−1=2Cν

sðxÞgðr; xÞ; ð5Þ

where

Ns;ν ¼
21−2νπΓðsþ 2νÞ

ðsþ νÞΓðsþ 1ÞΓ2ðνÞ : ð6Þ

This is termed the Euclidean inversion formula in Ref. [7].
Writing x ¼ cos θ ¼ ðwþ 1=wÞ=2 with w ¼ eiθ one can

transform Eq. (5) into a contour integral over the unit circle
in the complex-w plane. To exploit the analytic structure of
the two-point function gðr; cos θÞ, one would like to allow
w to explore the full complex plane. This can be done by a
suitable complexification of the Euclidean variables r, θ,
defining z ¼ rw and z̄ ¼ r=w, which are now independent
real variables. As a function of w, gðr; wÞ is assumed to
have the cuts ð−∞;−1=rÞ, ð−r; 0Þ, ð0; rÞ, and ð1=r;∞Þ,
and to grow not faster than ws0 (1=ws0) for large (small) w
for some constant s0. Moreover, one needs to use the
analytic extension of the Gegenbauer polynomials to the
whole complex plane as

Cν
sðwÞ ¼

Γðsþ 2νÞ
ΓðνÞΓðsþ νþ 1Þ ðFsð1=wÞeiνπ þ FsðwÞe−iνπÞ;

ð7Þ

where

FsðwÞ ¼ wsþ2ν
2F1ðsþ 2ν; ν; sþ νþ 1;w2Þ: ð8Þ

Then, the integral giving aðΔ; sÞ will receive contributions
from the discontinuities across the cuts of gðr; wÞ as well as
from the arcs at infinity. The final result is

aðΔ; sÞ ¼ adiscðΔ; sÞ þ θðs0 − sÞaarcsðΔ; sÞ; ð9Þ

where

adiscðΔ; sÞ ¼ Ks

Z
1

0

dz̄
z̄

Z
∞

1

dz
z

�
ðzz̄ÞΔϕ−ðΔ=2Þ−ν

× ðz − z̄Þ2νFs

� ffiffiffī
z
z

r �
disc½gðz; z̄Þ�

�
; ð10Þ

with

Ks ¼ ð1þ ð−1ÞsÞΓðsþ 1ÞΓðνÞ
4πΓðsþ νÞ : ð11Þ

The discontinuity relevant for the evaluation of Eq. (10) is
the one across the cut ð1=r;∞Þ, since all others are related
to it.
Gap equations from the inversion formula.—The OPE

inversion formulas are powerful tools when they are
applied to already known correlation functions. In this
context, one needs an ansatz for the thermal two-point
function before applying OPE inversion. For bosons, one of
the simplest choices is to consider the momentum-space
two-point function

GðdÞðωn;pÞ ¼
1

ω2
n þ p2 þm2

th

; ð12Þ

where ωn ¼ 2πn, n ¼ 0;�1;�2;…, are the bosonic
Matsubara frequencies along the finite direction. Clearly,
Eq. (12) is motivated by known work on thermal field
theory which shows that fields develop generically a
thermal mass mth at finite temperature. From our point
of view we are asking whether the simple ansatz Eq. (12)
can define a thermal CFT. We make no reference to a
Lagrangian, although it is known that Eq. (12) can be
obtained, e.g., in the large-N limit of the OðNÞ model.
In arbitrary d, Eq. (12) can be Fourier transformed to

GðdÞðτ;xÞ ¼ 1

ð2πÞd=2
X∞
n¼−∞

�
mth

jXnj
�

d=2−1
Kd=2−1ðmthjXnjÞ;

Xn ¼ ðτ − n;xÞ; ð13Þ
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where KαðxÞ is the modified Bessel function of the
second kind. Defining z ¼ τ þ ijxj, we have jXnj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − zÞðn − z̄Þp

. From now on we focus on odd d ¼
2kþ 1, k ¼ 1; 2;…, and in that case we may write [9],
Sec. 8.468, [10]

Gð2kþ1Þðτ;xÞ ¼ 1

2kþ1πk
X∞
n¼−∞

mk−1
th

jXnjk
e−mthjXnj

×
Xk−1
p¼0

Lk;p

ðmthjXnjÞp
; ð14Þ

with

Lk;p ¼ ðk − 1þ pÞ!
2pp!ðk − 1 − pÞ! : ð15Þ

These coefficients also appear in the Bessel polynomials
[11]

ynðxÞ ¼
Xn
p¼0

Lnþ1;pxp ¼
ffiffiffiffiffi
2

πx

r
e1=xKnþ1=2ð1=xÞ: ð16Þ

The relevant discontinuity discðGðdÞÞ now follows sim-
ply from understanding the discontinuity of the function

fðkÞðxÞ ¼ ak−1

ð ffiffiffi
x

p Þk e
−a

ffiffi
x

p Xk−1
p¼0

Lk;p

ða ffiffiffi
x

p Þp ð17Þ

across the cut due to the square-root branch point at x ¼ 0.
Assuming that the cut goes from x ¼ 0 to x ¼ ∞, it can be
verified that

disc(fðkÞðxÞ) ¼ 2

xk−1

�
1ffiffiffiffiffiffi
−x

p UkðxÞ cosða
ffiffiffiffiffiffi
−x

p Þ

þ VkðxÞ sinða
ffiffiffiffiffiffi
−x

p Þ
�
; ð18Þ

where

UkðxÞ ¼
1

2
½θk−1ð

ffiffiffi
x

p Þ þ θk−1ð−
ffiffiffi
x

p Þ�;

VkðxÞ ¼
1

2
ffiffiffi
x

p ½θk−1ð
ffiffiffi
x

p Þ − θk−1ð−
ffiffiffi
x

p Þ�; ð19Þ

with θnðxÞ ¼ xnynð1=xÞ the so-called reverse Bessel poly-
nomials [12].
Using the results Eqs. (18) and (19), we can now

calculate Eq. (9). For the discontinuity part we find

aðkÞdisc;0ðΔ; sÞ ¼ ½1þ ð−1Þs� 1

22sþks!

Γðk − 1
2
Þ

Γðkþ s − 1
2
Þ

×
Xk−1þs

n¼0

2nþ1

n!
½2ðk − 1þ sÞ − n�!
ðk − 1þ s − nÞ!

×mn
thLi2k−1þs−nðe−mthÞ; ð20Þ

in the conventions of Ref. [7], where LiαðzÞ ¼
P∞

n¼1 z
n=nα

is the polylogarithm. The result Eq. (20) only pertains to
the leading term in a z̄ expansion of the quantity under
the integral in Eq. (9) [13], reproducing contributions
of operators with Δ ¼ d − 2þ s. These are higher-spin
conserved currents saturating the unitarity bound.
Subleading terms in the z̄ expansion can also be considered
and would lead to expressions that could be denoted by

aðkÞdisc;1; a
ðkÞ
disc;2;…, corresponding to higher-twist operators.

The arc part aðdÞarcsðΔ; sÞ is nonzero only for s ¼ 0, and in
that case it needs to be taken into account carefully. We find

aðdÞarcsðΔ; 0Þ ¼ 1

2Δ−ðd−5Þ=2
ffiffiffi
π

p mΔ
thΓ

�
−
Δ
2

�
Γ
�
−
Δ − dþ 2

2

�
:

ð21Þ

Notice that for mth ¼ 0, only the Δ ¼ 0 term survives,
giving the contribution of the identity operator. This,
along with the corresponding mth ¼ 0 contributions from

aðkÞdiscðΔ; sÞ, yields the spectrum of generalized free CFTs.
When mth ≠ 0 and for Δ > 0, Eq. (21) yields contributions
of an infinite tower of scalar operators with Δ¼2m,
m¼1;2;…, as well as contributions with Δ¼d−2þ2l,
l ¼ 0; 1; 2;…. The former correspond to operators of the
form σm, m ¼ 1; 2;…, where σ is the shadow of ϕ2.
For the latter operators we will first focus on the l ¼ 0

case, corresponding to the ϕ2 operator, which appears both
from Eqs. (21) and (20). If we demand the absence of this
operator from the spectrum, as required by the fact that it is
substituted by the σ operator, then the residue of the Δ ¼
d − 2 arc contribution should cancel the s ¼ 0 contribution
in Eq. (20). This turns out to give rise to a condition that
determines mth, namely,

Xk−1
n¼0

2nþ1

n!
ð2ðk − 1Þ − nÞ!
ðk − 1 − nÞ! mn

thLi2k−1−nðe−mthÞ

¼ −
1

2
ffiffiffi
π

p m2k−1
th Γ

�
−kþ 1

2

�
: ð22Þ

This is called the gap equation and it is here presented for
any d ¼ 2kþ 1, k ¼ 1; 2;….
Higher poles in Eq. (21) at Δ ¼ d − 2þ 2l, l ¼ 1; 2;…,

correspond to scalar operators of the form ϕ∂2lϕ. Such
operators also arise from subleading terms in the z̄
expansion of the quantity under the integral in Eq. (9),

from expressions we previously referred to as aðkÞdisc;1;

aðkÞdisc;2;…. These operators should also disappear from
the spectrum when the gap equation (22) is satisfied.
Although we have verified this in a couple of cases, we
do not have a general proof for it.
The arc contribution of the identity operator provides a

quick consistency check of our computations. Since the
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identity operator has Δ ¼ 0, we see that the pole associated
with it appears due to Γ½−ðΔ=2Þ� in Eq. (21). For the
residue of that pole, we find

Res
Δ¼0

½aðdÞarcsðΔ; 0Þ� ¼ −
2ðd−3Þ=2ffiffiffi

π
p Γ

�
d
2
− 1

�
; ð23Þ

exactly as required to reproduce the correct normalization
of the identity operator in our conventions—for this we
need to take into account a1 from Eq. (3) and recall that we
are working in conventions where the 1=2kþ1πk in Eq. (14)
has been rescaled away.
It is also possible to study finite-temperature fermionic

two-point functions using the inversion formula. The
simplest case to consider is the singlet projection of the
two-point functions of Dirac fermions ψ iðxÞ, ψ̄ iðxÞ in odd
dimensions,

hψ iðxÞψ̄ ið0Þiβ ≡ g̃ðr; cos θÞ ¼
X
Õs≠1

ãÕs

�
r
β

�
ΔÕs Cν

sðcos θÞ
r2Δψ

;

ð24Þ

with Δψ ¼ Δϕ þ 1=2. We denote by i; j ¼ 1; 2;…; 2ðd−1Þ=2

the spinor indices. Notice that Eq. (24) vanishes at zero
temperature, which means that the unit operator is absent
in the finite-temperature OPE. The corresponding unit-
normalized momentum-space two-point function is

G̃ðdÞðωn;pÞ ¼
m̃th

ω2
n þ p2 þ m̃2

th

; ð25Þ

where the fermionic Matsubara frequencies are ωn ¼
2πðnþ 1=2Þ, n ¼ 0;�1;�2;…. The propagator Eq. (25)
vanishes for m̃th ¼ 0, so we will only consider m̃th ≠ 0
in the fermionic case from now on. The calculations
follow closely the bosonic case—e.g., it is known that
fermionic Matsubara sums reduce to a linear combination
of bosonic ones. We then notice that by virtue of the
relationship Δψ ¼ Δϕ þ 1=2, the fermionic formulas can
all be obtained from the bosonic ones by the simple shift
Δ → Δ − 1. The arc contributions in the fermionic case are
thus given by

ãðdÞarcsðΔ; 0Þ ¼ −
1

2Δ−ðd−3Þ=2
ffiffiffi
π

p m̃Δ−1
th Γ

�
−
Δ − 1

2

�

× Γ
�
−
Δ − dþ 1

2

�
; ð26Þ

relevant for operators of dimension Δ ¼ 2mþ 1 and
Δ ¼ d − 1þ 2m, m ¼ 0; 1; 2;…. The former are contri-
butions that do not arise from the discontinuity part, having
the form σ̃m with σ̃ the shadow field of ψ̄ψ . Note that, as
expected, there is no contribution from the unit operator.

The latter provide contributions from operators of the form
ψ̄∂2mψ that coincide with those coming from the disconti-
nuity. The fermionic gap equation is the condition for the
cancellation of the latter operators from the spectrum, and it
reads

Xk−1
n¼0

2nþ1

n!
½2ðk − 1Þ − n�!
ðk − 1 − nÞ! m̃nþ1

th Li2k−1−nð−e−m̃thÞ

¼ −
1

2
ffiffiffi
π

p m̃2k
th Γ

�
−kþ 1

2

�
: ð27Þ

Discussion.—One of the messages of this work is that
OPE inversion formulas can reveal the nontrivial dynamics
of finite-temperature CFTs. In the simple examples we have
studied, the dynamics effect a rearrangement in the operator
spectrum which is ensured by the gap equations (22) and
(27). An analysis of the gap equations shows that their
solutions follow a pattern which, as we will argue below, is
intimately related to the vacuum structure of scalar and
fermionic theories near even dimensions.
In the bosonic case the gap equation (22) in d ¼ 3 reads

−mth ¼ 2 logð1 − e−mthÞ; ð28Þ

with the well-known solution

mðd¼3Þ
th ¼ 2 log

�
1þ ffiffiffi

5
p

2

�
≈ 0.96242: ð29Þ

In d ¼ 5 the gap equation becomes [14]

−
1

6
m3

th ¼ Li3ðe−mthÞ þmthLi2ðe−mthÞ: ð30Þ

This has a complex conjugate pair of solutions given
numerically by

mðd¼5Þ
th ≈ 1.17431� 1.19808i: ð31Þ

In fact, we find that for d ¼ 3; 7; 11;…, the bosonic gap
equation (22) has a unique real solution for mth and
complex solutions that come in conjugate pairs, except
in the case d ¼ 3, where there are no complex solutions. To
give another example, in d ¼ 7 we find a real and a pair of
complex conjugate solutions. For d ¼ 5; 9; 13;…, we do
not find any real solutions, and the gap equation only has
pairs of complex conjugate solutions. In d ¼ 5we only find
the solutions Eq. (31), while in d ¼ 9 we find four complex
conjugate pairs of solutions. Notice also that mth ¼ 0 is
never a solution of the bosonic gap equations.
The fermionic gap equations in d ¼ 3, 5 are given,

respectively, by [14]

−m̃2
th ¼ 2m̃th logð1þ e−m̃thÞ; ð32Þ
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−
1

6
m̃4

th ¼ m̃thLi3ð−e−m̃thÞ þ m̃2
thLi2ð−e−m̃thÞ: ð33Þ

For d ¼ 3 and m̃th ≠ 0, Eq. (32) has only a pair of complex

conjugate imaginary solutions m̃ðd¼3Þ
th ¼�2πi=3. For d¼5,

Eq. (33) has a pair of opposite real solutions, as well as a
pair of complex conjugate imaginary ones which can be
found numerically. This pattern continues to higher dimen-
sions; namely, for d ¼ 7; 11; 15;… there is no real solution
to the corresponding fermionic gap equation, while for d ¼
9; 13; 17;… there is always a pair of opposite real solutions
and an increasing number of complex conjugate ones.
The above pattern for the solutions of bosonic and

fermionic gap equations for all odd d fits nicely with a
renormalization-group understanding of universality
classes of scalars and fermions in general dimensions. In
the bosonic case the standard lore is that the large-N
universality class for scalars in d ¼ 2kþ 1, k ¼ 1; 2;…, is
accessible via the ε expansion starting from d ¼ 2kþ 2.
Using the general-d large-N results of Refs. [15–22], this
has been verified in specific cases in Refs. [23–25]. The key
ingredient in such studies is the Hubbard-Stratonovich
transformation, which introduces a field σ via the classi-
cally marginal interaction σϕ2. This way σ has dimension
Δσ ¼ 2 in all d, and the scalars ϕ can be integrated out
resulting in an effective potential for σ of the general form

VeffðσÞ ∼ Trd logð−∂2 þ σÞ þ g�σd=2 þ � � � ; ð34Þ

where g� is some critical dimensionless coupling. For
general d the effective potential can also receive contribu-
tions from terms involving derivatives of σ, but the term
σd=2 is universal. Performing the Trd log calculation in
d − ε one finds that for d ¼ 4; 8; 12;… there is a resulting
contribution of the form σd=2 log σ2, which is positive and
dominates for large σ. Thus, besides possible local minima,
the effective potential has a global minimum. On the other
hand, for d ¼ 6; 10; 14;… the term σd=2 leads to an
unbounded potential, and hence to the absence of a global
minimum, regardless of the sign of the Trd log contribution.
This matches exactly the pattern we see for mth. A real mth
implies a global minimum, while a complex mth signals
unstable local extrema with nonzero decay width.
In the fermionic case our results are consistent with the

understanding that the corresponding large-N universality
classes in d ¼ 2kþ 1, k ¼ 1; 2;…, are also accessible via
the ε expansion starting from a generalization of the Gross-
Neveu-Yukawa model to d ¼ 2kþ 2 [26]. The correspond-
ing Hubbard-Stratonovich transformation introduces the
field σ̃ via the classically marginal interaction σ̃ ψ̄ ψ . Here,
σ̃ has dimension Δσ̃ ¼ 1 in all d, and integrating out the
fermions leads to an effective potential of the form

Veffðσ̃Þ ∼ −Trd logð=∂ þ σ̃Þ þ g̃�σ̃d þ � � � : ð35Þ

Notice that the Trd log term enters with the opposite sign
compared to the bosonic case. In this case the universal
term σ̃d gives always a bounded from below contribution
(recall d is even). However, the Trd log term alters the form
of the effective potential in d − ε. More specifically, for
d ¼ 4; 8; 12;…, this term gives a negative contribution that
dominates at infinity leading to an unstable vacuum
structure, while for d ¼ 6; 10; 14;…, it gives a positive
contribution that guarantees the presence of a global
minimum. In either case there can be a number of unstable
extrema. This matches exactly the pattern for the m̃th
solutions to the fermionic gap equations.
To summarize, OPE inversion formulas applied to CFTs

in nontrivial geometries reveal crucial dynamical properties
of critical systems at the level of the operator spectrum. The
consistency of the lift to the nontrivial geometry requires
that CFTs develop thermal masses that solve a gap
equation. Remarkably, these thermal masses also encode
information about the vacuum structure of CFTs even at
zero temperature.
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